[m] merge 27-multiple-modules

This commit is contained in:
Siarhei Siniak 2025-05-20 11:46:06 +03:00
commit f28b01e498
46 changed files with 1563 additions and 4372 deletions

@ -1,18 +0,0 @@
[mypy]
mypy_path =
mypy-stubs,
deps/com.github.aiortc.aiortc/src,
mypy-stubs/marisa-trie-types,
mypy-stubs/types-debugpy,
python
exclude =
python/tmp,
python/build
plugins =
numpy.typing.mypy_plugin,
pydantic.mypy
explicit_package_bases = true
namespace_packages = true

@ -1,694 +0,0 @@
# %% [markdown]
# # About this Notebook
#
# NLP is a very hot topic right now and as belived by many experts '2020 is going to be NLP's Year' ,with its ever changing dynamics it is experiencing a boom , same as computer vision once did. Owing to its popularity Kaggle launched two NLP competitions recently and me being a lover of this Hot topic prepared myself to join in my first Kaggle Competition.<br><br>
# As I joined the competitions and since I was a complete beginner with Deep Learning Techniques for NLP, all my enthusiasm took a beating when I saw everyone Using all kinds of BERT , everything just went over my head,I thought to quit but there is a special thing about Kaggle ,it just hooks you. I thought I have to learn someday , why not now , so I braced myself and sat on the learning curve. I wrote a kernel on the Tweet Sentiment Extraction competition that has now got a gold medal , it can be viewed here : https://www.kaggle.com/tanulsingh077/twitter-sentiment-extaction-analysis-eda-and-model <br><br>
# After 10 days of extensive learning(finishing all the latest NLP approaches) , I am back here to share my leaning , by writing a kernel that starts from the very Basic RNN's to built over , all the way to BERT . I invite you all to come and learn alongside with me and take a step closer towards becoming an NLP expert
# %% [markdown]
# # Contents
#
# In this Notebook I will start with the very Basics of RNN's and Build all the way to latest deep learning architectures to solve NLP problems. It will cover the Following:
# * Simple RNN's
# * Word Embeddings : Definition and How to get them
# * LSTM's
# * GRU's
# * BI-Directional RNN's
# * Encoder-Decoder Models (Seq2Seq Models)
# * Attention Models
# * Transformers - Attention is all you need
# * BERT
#
# I will divide every Topic into four subsections:
# * Basic Overview
# * In-Depth Understanding : In this I will attach links of articles and videos to learn about the topic in depth
# * Code-Implementation
# * Code Explanation
#
# This is a comprehensive kernel and if you follow along till the end , I promise you would learn all the techniques completely
#
# Note that the aim of this notebook is not to have a High LB score but to present a beginner guide to understand Deep Learning techniques used for NLP. Also after discussing all of these ideas , I will present a starter solution for this competiton
# %% [markdown]
# **<span style="color:Red">This kernel has been a work of more than 10 days If you find my kernel useful and my efforts appreciable, Please Upvote it , it motivates me to write more Quality content**
# %% [code]
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.models import Sequential
from keras.layers.recurrent import LSTM, GRU,SimpleRNN
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.normalization import BatchNormalization
from keras.utils import np_utils
from sklearn import preprocessing, decomposition, model_selection, metrics, pipeline
from keras.layers import GlobalMaxPooling1D, Conv1D, MaxPooling1D, Flatten, Bidirectional, SpatialDropout1D
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
import seaborn as sns
#%matplotlib inline
from plotly import graph_objs as go
import plotly.express as px
import plotly.figure_factory as ff
# %% [markdown]
# # Configuring TPU's
#
# For this version of Notebook we will be using TPU's as we have to built a BERT Model
# %% [code]
# Detect hardware, return appropriate distribution strategy
try:
# TPU detection. No parameters necessary if TPU_NAME environment variable is
# set: this is always the case on Kaggle.
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
# Default distribution strategy in Tensorflow. Works on CPU and single GPU.
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync)
# %% [code]
train = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-toxic-comment-train.csv')
validation = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/validation.csv')
test = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/test.csv')
# %% [markdown]
# We will drop the other columns and approach this problem as a Binary Classification Problem and also we will have our exercise done on a smaller subsection of the dataset(only 12000 data points) to make it easier to train the models
# %% [code]
train.drop(['severe_toxic','obscene','threat','insult','identity_hate'],axis=1,inplace=True)
# %% [code]
train = train.loc[:12000,:]
train.shape
# %% [markdown]
# We will check the maximum number of words that can be present in a comment , this will help us in padding later
# %% [code]
train['comment_text'].apply(lambda x:len(str(x).split())).max()
# %% [markdown]
# Writing a function for getting auc score for validation
# %% [code]
def roc_auc(predictions,target):
'''
This methods returns the AUC Score when given the Predictions
and Labels
'''
fpr, tpr, thresholds = metrics.roc_curve(target, predictions)
roc_auc = metrics.auc(fpr, tpr)
return roc_auc
# %% [markdown]
# ### Data Preparation
# %% [code]
xtrain, xvalid, ytrain, yvalid = train_test_split(train.comment_text.values, train.toxic.values,
stratify=train.toxic.values,
random_state=42,
test_size=0.2, shuffle=True)
# %% [markdown]
# # Before We Begin
#
# Before we Begin If you are a complete starter with NLP and never worked with text data, I am attaching a few kernels that will serve as a starting point of your journey
# * https://www.kaggle.com/arthurtok/spooky-nlp-and-topic-modelling-tutorial
# * https://www.kaggle.com/abhishek/approaching-almost-any-nlp-problem-on-kaggle
#
# If you want a more basic dataset to practice with here is another kernel which I wrote:
# * https://www.kaggle.com/tanulsingh077/what-s-cooking
#
# Below are some Resources to get started with basic level Neural Networks, It will help us to easily understand the upcoming parts
# * https://www.youtube.com/watch?v=aircAruvnKk&list=PL_h2yd2CGtBHEKwEH5iqTZH85wLS-eUzv
# * https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PL_h2yd2CGtBHEKwEH5iqTZH85wLS-eUzv&index=2
# * https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PL_h2yd2CGtBHEKwEH5iqTZH85wLS-eUzv&index=3
# * https://www.youtube.com/watch?v=tIeHLnjs5U8&list=PL_h2yd2CGtBHEKwEH5iqTZH85wLS-eUzv&index=4
#
# For Learning how to visualize test data and what to use view:
# * https://www.kaggle.com/tanulsingh077/twitter-sentiment-extaction-analysis-eda-and-model
# * https://www.kaggle.com/jagangupta/stop-the-s-toxic-comments-eda
# %% [markdown]
# # Simple RNN
#
# ## Basic Overview
#
# What is a RNN?
#
# Recurrent Neural Network(RNN) are a type of Neural Network where the output from previous step are fed as input to the current step. In traditional neural networks, all the inputs and outputs are independent of each other, but in cases like when it is required to predict the next word of a sentence, the previous words are required and hence there is a need to remember the previous words. Thus RNN came into existence, which solved this issue with the help of a Hidden Layer.
#
# Why RNN's?
#
# https://www.quora.com/Why-do-we-use-an-RNN-instead-of-a-simple-neural-network
#
# ## In-Depth Understanding
#
# * https://medium.com/mindorks/understanding-the-recurrent-neural-network-44d593f112a2
# * https://www.youtube.com/watch?v=2E65LDnM2cA&list=PL1F3ABbhcqa3BBWo170U4Ev2wfsF7FN8l
# * https://www.d2l.ai/chapter_recurrent-neural-networks/rnn.html
#
# ## Code Implementation
#
# So first I will implement the and then I will explain the code step by step
# %% [code]
# using keras tokenizer here
token = text.Tokenizer(num_words=None)
max_len = 1500
token.fit_on_texts(list(xtrain) + list(xvalid))
xtrain_seq = token.texts_to_sequences(xtrain)
xvalid_seq = token.texts_to_sequences(xvalid)
#zero pad the sequences
xtrain_pad = sequence.pad_sequences(xtrain_seq, maxlen=max_len)
xvalid_pad = sequence.pad_sequences(xvalid_seq, maxlen=max_len)
word_index = token.word_index
# %% [code]
#%%time
with strategy.scope():
# A simpleRNN without any pretrained embeddings and one dense layer
model = Sequential()
model.add(Embedding(len(word_index) + 1,
300,
input_length=max_len))
model.add(SimpleRNN(100))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# %% [code]
model.fit(xtrain_pad, ytrain, nb_epoch=5, batch_size=64*strategy.num_replicas_in_sync) #Multiplying by Strategy to run on TPU's
# %% [code]
scores = model.predict(xvalid_pad)
print("Auc: %.2f%%" % (roc_auc(scores,yvalid)))
# %% [code]
scores_model = []
scores_model.append({'Model': 'SimpleRNN','AUC_Score': roc_auc(scores,yvalid)})
# %% [markdown]
# ## Code Explanantion
# * Tokenization<br><br>
# So if you have watched the videos and referred to the links, you would know that in an RNN we input a sentence word by word. We represent every word as one hot vectors of dimensions : Numbers of words in Vocab +1. <br>
# What keras Tokenizer does is , it takes all the unique words in the corpus,forms a dictionary with words as keys and their number of occurences as values,it then sorts the dictionary in descending order of counts. It then assigns the first value 1 , second value 2 and so on. So let's suppose word 'the' occured the most in the corpus then it will assigned index 1 and vector representing 'the' would be a one-hot vector with value 1 at position 1 and rest zereos.<br>
# Try printing first 2 elements of xtrain_seq you will see every word is represented as a digit now
# %% [code]
xtrain_seq[:1]
# %% [markdown]
# <b>Now you might be wondering What is padding? Why its done</b><br><br>
#
# Here is the answer :
# * https://www.quora.com/Which-effect-does-sequence-padding-have-on-the-training-of-a-neural-network
# * https://machinelearningmastery.com/data-preparation-variable-length-input-sequences-sequence-prediction/
# * https://www.coursera.org/lecture/natural-language-processing-tensorflow/padding-2Cyzs
#
# Also sometimes people might use special tokens while tokenizing like EOS(end of string) and BOS(Begining of string). Here is the reason why it's done
# * https://stackoverflow.com/questions/44579161/why-do-we-do-padding-in-nlp-tasks
#
#
# The code token.word_index simply gives the dictionary of vocab that keras created for us
# %% [markdown]
# * Building the Neural Network
#
# To understand the Dimensions of input and output given to RNN in keras her is a beautiful article : https://medium.com/@shivajbd/understanding-input-and-output-shape-in-lstm-keras-c501ee95c65e
#
# The first line model.Sequential() tells keras that we will be building our network sequentially . Then we first add the Embedding layer.
# Embedding layer is also a layer of neurons which takes in as input the nth dimensional one hot vector of every word and converts it into 300 dimensional vector , it gives us word embeddings similar to word2vec. We could have used word2vec but the embeddings layer learns during training to enhance the embeddings.
# Next we add an 100 LSTM units without any dropout or regularization
# At last we add a single neuron with sigmoid function which takes output from 100 LSTM cells (Please note we have 100 LSTM cells not layers) to predict the results and then we compile the model using adam optimizer
#
# * Comments on the model<br><br>
# We can see our model achieves an accuracy of 1 which is just insane , we are clearly overfitting I know , but this was the simplest model of all ,we can tune a lot of hyperparameters like RNN units, we can do batch normalization , dropouts etc to get better result. The point is we got an AUC score of 0.82 without much efforts and we know have learnt about RNN's .Deep learning is really revolutionary
# %% [markdown]
# # Word Embeddings
#
# While building our simple RNN models we talked about using word-embeddings , So what is word-embeddings and how do we get word-embeddings?
# Here is the answer :
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/6Oq70/word-representation
# * https://machinelearningmastery.com/what-are-word-embeddings/
# <br> <br>
# The latest approach to getting word Embeddings is using pretained GLoVe or using Fasttext. Without going into too much details, I would explain how to create sentence vectors and how can we use them to create a machine learning model on top of it and since I am a fan of GloVe vectors, word2vec and fasttext. In this Notebook, I'll be using the GloVe vectors. You can download the GloVe vectors from here http://www-nlp.stanford.edu/data/glove.840B.300d.zip or you can search for GloVe in datasets on Kaggle and add the file
# %% [code]
# load the GloVe vectors in a dictionary:
embeddings_index = {}
f = open('/kaggle/input/glove840b300dtxt/glove.840B.300d.txt','r',encoding='utf-8')
for line in tqdm(f):
values = line.split(' ')
word = values[0]
coefs = np.asarray([float(val) for val in values[1:]])
embeddings_index[word] = coefs
f.close()
print('Found %s word vectors.' % len(embeddings_index))
# %% [markdown]
# # LSTM's
#
# ## Basic Overview
#
# Simple RNN's were certainly better than classical ML algorithms and gave state of the art results, but it failed to capture long term dependencies that is present in sentences . So in 1998-99 LSTM's were introduced to counter to these drawbacks.
#
# ## In Depth Understanding
#
# Why LSTM's?
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/PKMRR/vanishing-gradients-with-rnns
# * https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
#
# What are LSTM's?
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/KXoay/long-short-term-memory-lstm
# * https://distill.pub/2019/memorization-in-rnns/
# * https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
#
# # Code Implementation
#
# We have already tokenized and paded our text for input to LSTM's
# %% [code]
# create an embedding matrix for the words we have in the dataset
embedding_matrix = np.zeros((len(word_index) + 1, 300))
for word, i in tqdm(word_index.items()):
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
# %% [code]
#%%time
with strategy.scope():
# A simple LSTM with glove embeddings and one dense layer
model = Sequential()
model.add(Embedding(len(word_index) + 1,
300,
weights=[embedding_matrix],
input_length=max_len,
trainable=False))
model.add(LSTM(100, dropout=0.3, recurrent_dropout=0.3))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])
model.summary()
# %% [code]
model.fit(xtrain_pad, ytrain, nb_epoch=5, batch_size=64*strategy.num_replicas_in_sync)
# %% [code]
scores = model.predict(xvalid_pad)
print("Auc: %.2f%%" % (roc_auc(scores,yvalid)))
# %% [code]
scores_model.append({'Model': 'LSTM','AUC_Score': roc_auc(scores,yvalid)})
# %% [markdown]
# ## Code Explanation
#
# As a first step we calculate embedding matrix for our vocabulary from the pretrained GLoVe vectors . Then while building the embedding layer we pass Embedding Matrix as weights to the layer instead of training it over Vocabulary and thus we pass trainable = False.
# Rest of the model is same as before except we have replaced the SimpleRNN By LSTM Units
#
# * Comments on the Model
#
# We now see that the model is not overfitting and achieves an auc score of 0.96 which is quite commendable , also we close in on the gap between accuracy and auc .
# We see that in this case we used dropout and prevented overfitting the data
# %% [markdown]
# # GRU's
#
# ## Basic Overview
#
# Introduced by Cho, et al. in 2014, GRU (Gated Recurrent Unit) aims to solve the vanishing gradient problem which comes with a standard recurrent neural network. GRU's are a variation on the LSTM because both are designed similarly and, in some cases, produce equally excellent results . GRU's were designed to be simpler and faster than LSTM's and in most cases produce equally good results and thus there is no clear winner.
#
# ## In Depth Explanation
#
# * https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/agZiL/gated-recurrent-unit-gru
# * https://www.geeksforgeeks.org/gated-recurrent-unit-networks/
#
# ## Code Implementation
# %% [code]
#%%time
with strategy.scope():
# GRU with glove embeddings and two dense layers
model = Sequential()
model.add(Embedding(len(word_index) + 1,
300,
weights=[embedding_matrix],
input_length=max_len,
trainable=False))
model.add(SpatialDropout1D(0.3))
model.add(GRU(300))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])
model.summary()
# %% [code]
model.fit(xtrain_pad, ytrain, nb_epoch=5, batch_size=64*strategy.num_replicas_in_sync)
# %% [code]
scores = model.predict(xvalid_pad)
print("Auc: %.2f%%" % (roc_auc(scores,yvalid)))
# %% [code]
scores_model.append({'Model': 'GRU','AUC_Score': roc_auc(scores,yvalid)})
# %% [code]
scores_model
# %% [markdown]
# # Bi-Directional RNN's
#
# ## In Depth Explanation
#
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/fyXnn/bidirectional-rnn
# * https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66
# * https://d2l.ai/chapter_recurrent-modern/bi-rnn.html
#
# ## Code Implementation
# %% [code]
#%%time
with strategy.scope():
# A simple bidirectional LSTM with glove embeddings and one dense layer
model = Sequential()
model.add(Embedding(len(word_index) + 1,
300,
weights=[embedding_matrix],
input_length=max_len,
trainable=False))
model.add(Bidirectional(LSTM(300, dropout=0.3, recurrent_dropout=0.3)))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])
model.summary()
# %% [code]
model.fit(xtrain_pad, ytrain, nb_epoch=5, batch_size=64*strategy.num_replicas_in_sync)
# %% [code]
scores = model.predict(xvalid_pad)
print("Auc: %.2f%%" % (roc_auc(scores,yvalid)))
# %% [code]
scores_model.append({'Model': 'Bi-directional LSTM','AUC_Score': roc_auc(scores,yvalid)})
# %% [markdown]
# ## Code Explanation
#
# Code is same as before,only we have added bidirectional nature to the LSTM cells we used before and is self explanatory. We have achieve similar accuracy and auc score as before and now we have learned all the types of typical RNN architectures
# %% [markdown]
# **We are now at the end of part 1 of this notebook and things are about to go wild now as we Enter more complex and State of the art models .If you have followed along from the starting and read all the articles and understood everything , these complex models would be fairly easy to understand.I recommend Finishing Part 1 before continuing as the upcoming techniques can be quite overwhelming**
# %% [markdown]
# # Seq2Seq Model Architecture
#
# ## Overview
#
# RNN's are of many types and different architectures are used for different purposes. Here is a nice video explanining different types of model architectures : https://www.coursera.org/learn/nlp-sequence-models/lecture/BO8PS/different-types-of-rnns.
# Seq2Seq is a many to many RNN architecture where the input is a sequence and the output is also a sequence (where input and output sequences can be or cannot be of different lengths). This architecture is used in a lot of applications like Machine Translation, text summarization, question answering etc
#
# ## In Depth Understanding
#
# I will not write the code implementation for this,but rather I will provide the resources where code has already been implemented and explained in a much better way than I could have ever explained.
#
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/HyEui/basic-models ---> A basic idea of different Seq2Seq Models
#
# * https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html , https://machinelearningmastery.com/define-encoder-decoder-sequence-sequence-model-neural-machine-translation-keras/ ---> Basic Encoder-Decoder Model and its explanation respectively
#
# * https://towardsdatascience.com/how-to-implement-seq2seq-lstm-model-in-keras-shortcutnlp-6f355f3e5639 ---> A More advanced Seq2seq Model and its explanation
#
# * https://d2l.ai/chapter_recurrent-modern/machine-translation-and-dataset.html , https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html ---> Implementation of Encoder-Decoder Model from scratch
#
# * https://www.youtube.com/watch?v=IfsjMg4fLWQ&list=PLtmWHNX-gukKocXQOkQjuVxglSDYWsSh9&index=8&t=0s ---> Introduction to Seq2seq By fast.ai
# %% [code]
# Visualization of Results obtained from various Deep learning models
results = pd.DataFrame(scores_model).sort_values(by='AUC_Score',ascending=False)
results.style.background_gradient(cmap='Blues')
# %% [code]
fig = go.Figure(go.Funnelarea(
text =results.Model,
values = results.AUC_Score,
title = {"position": "top center", "text": "Funnel-Chart of Sentiment Distribution"}
))
fig.show()
# %% [markdown]
# # Attention Models
#
# This is the toughest and most tricky part. If you are able to understand the intiuition and working of attention block , understanding transformers and transformer based architectures like BERT will be a piece of cake. This is the part where I spent the most time on and I suggest you do the same . Please read and view the following resources in the order I am providing to ignore getting confused, also at the end of this try to write and draw an attention block in your own way :-
#
# * https://www.coursera.org/learn/nlp-sequence-models/lecture/RDXpX/attention-model-intuition --> Only watch this video and not the next one
# * https://towardsdatascience.com/sequence-2-sequence-model-with-attention-mechanism-9e9ca2a613a
# * https://towardsdatascience.com/attention-and-its-different-forms-7fc3674d14dc
# * https://distill.pub/2016/augmented-rnns/
#
# ## Code Implementation
#
# * https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/ --> Basic Level
# * https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html ---> Implementation from Scratch in Pytorch
# %% [markdown]
# # Transformers : Attention is all you need
#
# So finally we have reached the end of the learning curve and are about to start learning the technology that changed NLP completely and are the reasons for the state of the art NLP techniques .Transformers were introduced in the paper Attention is all you need by Google. If you have understood the Attention models,this will be very easy , Here is transformers fully explained:
#
# * http://jalammar.github.io/illustrated-transformer/
#
# ## Code Implementation
#
# * http://nlp.seas.harvard.edu/2018/04/03/attention.html ---> This presents the code implementation of the architecture presented in the paper by Google
# %% [markdown]
# # BERT and Its Implementation on this Competition
#
# As Promised I am back with Resiurces , to understand about BERT architecture , please follow the contents in the given order :-
#
# * http://jalammar.github.io/illustrated-bert/ ---> In Depth Understanding of BERT
#
# After going through the post Above , I guess you must have understood how transformer architecture have been utilized by the current SOTA models . Now these architectures can be used in two ways :<br><br>
# 1) We can use the model for prediction on our problems using the pretrained weights without fine-tuning or training the model for our sepcific tasks
# * EG: http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ ---> Using Pre-trained BERT without Tuning
#
# 2) We can fine-tune or train these transformer models for our task by tweaking the already pre-trained weights and training on a much smaller dataset
# * EG:* https://www.youtube.com/watch?v=hinZO--TEk4&t=2933s ---> Tuning BERT For your TASK
#
# We will be using the first example as a base for our implementation of BERT model using Hugging Face and KERAS , but contrary to first example we will also Fine-Tune our model for our task
#
# Acknowledgements : https://www.kaggle.com/xhlulu/jigsaw-tpu-distilbert-with-huggingface-and-keras
#
#
# Steps Involved :
# * Data Preparation : Tokenization and encoding of data
# * Configuring TPU's
# * Building a Function for Model Training and adding an output layer for classification
# * Train the model and get the results
# %% [code]
# Loading Dependencies
import os
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import ModelCheckpoint
from kaggle_datasets import KaggleDatasets
import transformers
from tokenizers import BertWordPieceTokenizer
# %% [code]
# LOADING THE DATA
train1 = pd.read_csv("/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-toxic-comment-train.csv")
valid = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/validation.csv')
test = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/test.csv')
sub = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/sample_submission.csv')
# %% [markdown]
# Encoder FOr DATA for understanding waht encode batch does read documentation of hugging face tokenizer :
# https://huggingface.co/transformers/main_classes/tokenizer.html here
# %% [code]
def fast_encode(texts, tokenizer, chunk_size=256, maxlen=512):
"""
Encoder for encoding the text into sequence of integers for BERT Input
"""
tokenizer.enable_truncation(max_length=maxlen)
tokenizer.enable_padding(max_length=maxlen)
all_ids = []
for i in tqdm(range(0, len(texts), chunk_size)):
text_chunk = texts[i:i+chunk_size].tolist()
encs = tokenizer.encode_batch(text_chunk)
all_ids.extend([enc.ids for enc in encs])
return np.array(all_ids)
# %% [code]
#IMP DATA FOR CONFIG
AUTO = tf.data.experimental.AUTOTUNE
# Configuration
EPOCHS = 3
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
MAX_LEN = 192
# %% [markdown]
# ## Tokenization
#
# For understanding please refer to hugging face documentation again
# %% [code]
# First load the real tokenizer
tokenizer = transformers.DistilBertTokenizer.from_pretrained('distilbert-base-multilingual-cased')
# Save the loaded tokenizer locally
tokenizer.save_pretrained('.')
# Reload it with the huggingface tokenizers library
fast_tokenizer = BertWordPieceTokenizer('vocab.txt', lowercase=False)
fast_tokenizer
# %% [code]
x_train = fast_encode(train1.comment_text.astype(str), fast_tokenizer, maxlen=MAX_LEN)
x_valid = fast_encode(valid.comment_text.astype(str), fast_tokenizer, maxlen=MAX_LEN)
x_test = fast_encode(test.content.astype(str), fast_tokenizer, maxlen=MAX_LEN)
y_train = train1.toxic.values
y_valid = valid.toxic.values
# %% [code]
train_dataset = (
tf.data.Dataset
.from_tensor_slices((x_train, y_train))
.repeat()
.shuffle(2048)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
valid_dataset = (
tf.data.Dataset
.from_tensor_slices((x_valid, y_valid))
.batch(BATCH_SIZE)
.cache()
.prefetch(AUTO)
)
test_dataset = (
tf.data.Dataset
.from_tensor_slices(x_test)
.batch(BATCH_SIZE)
)
# %% [code]
def build_model(transformer, max_len=512):
"""
function for training the BERT model
"""
input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids")
sequence_output = transformer(input_word_ids)[0]
cls_token = sequence_output[:, 0, :]
out = Dense(1, activation='sigmoid')(cls_token)
model = Model(inputs=input_word_ids, outputs=out)
model.compile(Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy'])
return model
# %% [markdown]
# ## Starting Training
#
# If you want to use any another model just replace the model name in transformers._____ and use accordingly
# %% [code]
#%%time
with strategy.scope():
transformer_layer = (
transformers.TFDistilBertModel
.from_pretrained('distilbert-base-multilingual-cased')
)
model = build_model(transformer_layer, max_len=MAX_LEN)
model.summary()
# %% [code]
n_steps = x_train.shape[0] // BATCH_SIZE
train_history = model.fit(
train_dataset,
steps_per_epoch=n_steps,
validation_data=valid_dataset,
epochs=EPOCHS
)
# %% [code]
n_steps = x_valid.shape[0] // BATCH_SIZE
train_history_2 = model.fit(
valid_dataset.repeat(),
steps_per_epoch=n_steps,
epochs=EPOCHS*2
)
# %% [code]
sub['toxic'] = model.predict(test_dataset, verbose=1)
sub.to_csv('submission.csv', index=False)
# %% [markdown]
# # End Notes
#
# This was my effort to share my learnings so that everyone can benifit from it.As this community has been very kind to me and helped me in learning all of this , I want to take this forward. I have shared all the resources I used to learn all the stuff .Join me and make these NLP competitions your first ,without being overwhelmed by the shear number of techniques used . It took me 10 days to learn all of this , you can learn it at your pace and dont give in , at the end of all this you will be a different person and it will all be worth it.
#
#
# ### I am attaching more resources if you want NLP end to end:
#
# 1) Books
#
# * https://d2l.ai/
# * Jason Brownlee's Books
#
# 2) Courses
#
# * https://www.coursera.org/learn/nlp-sequence-models/home/welcome
# * Fast.ai NLP Course
#
# 3) Blogs and websites
#
# * Machine Learning Mastery
# * https://distill.pub/
# * http://jalammar.github.io/
#
# **<span style="color:Red">This is subtle effort of contributing towards the community, if it helped you in any way please show a token of love by upvoting**

@ -1,757 +0,0 @@
# %% [markdown]
# <div>
# <h1 align="center">MLB Player Digital Engagement Forecasting</h1>
# <h1 align="center">LightGBM + CatBoost + ANN 2505f2</h1>
# </div>
# %% [markdown]
# <div class="alert alert-success">
# </div>
# %% [markdown]
# <div class="alert alert-success">
# <h1 align="center">If you find this work useful, please don't forget upvoting :)</h1>
# </div>
# %% [markdown]
# #### Thanks to: @lhagiimn https://www.kaggle.com/lhagiimn/lightgbm-catboost-ann-2505f2
#
# #### https://www.kaggle.com/columbia2131/mlb-lightgbm-starter-dataset-code-en-ja
#
# #### https://www.kaggle.com/mlconsult/1-3816-lb-lbgm-descriptive-stats-param-tune
#
# #### https://www.kaggle.com/batprem/lightgbm-ann-weight-with-love
#
# #### https://www.kaggle.com/mlconsult/1-3816-lb-lbgm-descriptive-stats-param-tune
#
# #### https://www.kaggle.com/ulrich07/mlb-ann-with-lags-tf-keras
#
# %% [markdown]
# <div class="alert alert-success">
# </div>
# %% [markdown]
# ## About Dataset
# %% [markdown]
# Train.csv is stored as a csv file with each column as follows.
#
# train.csvを以下のようにして各カラムをcsvファイルとして保管しています。
# %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:16:47.242749Z","iopub.execute_input":"2021-06-26T07:16:47.243324Z","iopub.status.idle":"2021-06-26T07:16:48.030215Z","shell.execute_reply.started":"2021-06-26T07:16:47.243266Z","shell.execute_reply":"2021-06-26T07:16:48.029Z"}}
import os
assert os.system(r'''cp ../input/fork-of-1-35-lightgbm-ann-2505f2-c4e96a/* .''') == 0
# %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:16:48.031858Z","iopub.execute_input":"2021-06-26T07:16:48.032396Z","iopub.status.idle":"2021-06-26T07:16:48.799514Z","shell.execute_reply.started":"2021-06-26T07:16:48.032357Z","shell.execute_reply":"2021-06-26T07:16:48.798628Z"}}
assert os.system(r'''ls''') == 0
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:48.801992Z","iopub.execute_input":"2021-06-26T07:16:48.802645Z","iopub.status.idle":"2021-06-26T07:16:48.813801Z","shell.execute_reply.started":"2021-06-26T07:16:48.802592Z","shell.execute_reply":"2021-06-26T07:16:48.812863Z"}}
#%%capture
"""
!pip install pandarallel
import gc
import numpy as np
import pandas as pd
from pathlib import Path
from pandarallel import pandarallel
pandarallel.initialize()
BASE_DIR = Path('../input/mlb-player-digital-engagement-forecasting')
train = pd.read_csv(BASE_DIR / 'train.csv')
null = np.nan
true = True
false = False
for col in train.columns:
if col == 'date': continue
_index = train[col].notnull()
train.loc[_index, col] = train.loc[_index, col].parallel_apply(lambda x: eval(x))
outputs = []
for index, date, record in train.loc[_index, ['date', col]].itertuples():
_df = pd.DataFrame(record)
_df['index'] = index
_df['date'] = date
outputs.append(_df)
outputs = pd.concat(outputs).reset_index(drop=True)
outputs.to_csv(f'{col}_train.csv', index=False)
outputs.to_pickle(f'{col}_train.pkl')
del outputs
del train[col]
gc.collect()
"""
# %% [markdown] {"execution":{"iopub.status.busy":"2021-06-16T09:14:33.869464Z","iopub.execute_input":"2021-06-16T09:14:33.869905Z","iopub.status.idle":"2021-06-16T09:14:33.874766Z","shell.execute_reply.started":"2021-06-16T09:14:33.869879Z","shell.execute_reply":"2021-06-16T09:14:33.873097Z"}}
# ## Training
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:48.81564Z","iopub.execute_input":"2021-06-26T07:16:48.816326Z","iopub.status.idle":"2021-06-26T07:16:50.081995Z","shell.execute_reply.started":"2021-06-26T07:16:48.816246Z","shell.execute_reply":"2021-06-26T07:16:50.080828Z"}}
import numpy as np
import pandas as pd
from pathlib import Path
from sklearn.metrics import mean_absolute_error
from datetime import timedelta
from functools import reduce
from tqdm import tqdm
import lightgbm as lgbm
import mlb
import os
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:50.083534Z","iopub.execute_input":"2021-06-26T07:16:50.083899Z","iopub.status.idle":"2021-06-26T07:16:50.088159Z","shell.execute_reply.started":"2021-06-26T07:16:50.083863Z","shell.execute_reply":"2021-06-26T07:16:50.087357Z"}}
BASE_DIR = Path('../input/mlb-player-digital-engagement-forecasting')
TRAIN_DIR = Path('../input/mlb-pdef-train-dataset')
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:50.08951Z","iopub.execute_input":"2021-06-26T07:16:50.090053Z","iopub.status.idle":"2021-06-26T07:16:54.221868Z","shell.execute_reply.started":"2021-06-26T07:16:50.090018Z","shell.execute_reply":"2021-06-26T07:16:54.220656Z"}}
players = pd.read_csv(BASE_DIR / 'players.csv')
rosters = pd.read_pickle(TRAIN_DIR / 'rosters_train.pkl')
targets = pd.read_pickle(TRAIN_DIR / 'nextDayPlayerEngagement_train.pkl')
scores = pd.read_pickle(TRAIN_DIR / 'playerBoxScores_train.pkl')
scores = scores.groupby(['playerId', 'date']).sum().reset_index()
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.223547Z","iopub.execute_input":"2021-06-26T07:16:54.224Z","iopub.status.idle":"2021-06-26T07:16:54.243132Z","shell.execute_reply.started":"2021-06-26T07:16:54.22395Z","shell.execute_reply":"2021-06-26T07:16:54.242076Z"}}
targets_cols = ['playerId', 'target1', 'target2', 'target3', 'target4', 'date']
players_cols = ['playerId', 'primaryPositionName']
rosters_cols = ['playerId', 'teamId', 'status', 'date']
scores_cols = ['playerId', 'battingOrder', 'gamesPlayedBatting', 'flyOuts',
'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns',
'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch',
'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay',
'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi',
'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference',
'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching',
'completeGamesPitching', 'shutoutsPitching', 'winsPitching',
'lossesPitching', 'flyOutsPitching', 'airOutsPitching',
'groundOutsPitching', 'runsPitching', 'doublesPitching',
'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching',
'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching',
'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching',
'stolenBasesPitching', 'inningsPitched', 'saveOpportunities',
'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls',
'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching',
'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners',
'inheritedRunnersScored', 'catchersInterferencePitching',
'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves',
'assists', 'putOuts', 'errors', 'chances', 'date']
feature_cols = ['label_playerId', 'label_primaryPositionName', 'label_teamId',
'label_status', 'battingOrder', 'gamesPlayedBatting', 'flyOuts',
'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns',
'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch',
'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay',
'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi',
'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference',
'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching',
'completeGamesPitching', 'shutoutsPitching', 'winsPitching',
'lossesPitching', 'flyOutsPitching', 'airOutsPitching',
'groundOutsPitching', 'runsPitching', 'doublesPitching',
'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching',
'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching',
'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching',
'stolenBasesPitching', 'inningsPitched', 'saveOpportunities',
'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls',
'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching',
'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners',
'inheritedRunnersScored', 'catchersInterferencePitching',
'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves',
'assists', 'putOuts', 'errors', 'chances','target1_mean',
'target1_median',
'target1_std',
'target1_min',
'target1_max',
'target1_prob',
'target2_mean',
'target2_median',
'target2_std',
'target2_min',
'target2_max',
'target2_prob',
'target3_mean',
'target3_median',
'target3_std',
'target3_min',
'target3_max',
'target3_prob',
'target4_mean',
'target4_median',
'target4_std',
'target4_min',
'target4_max',
'target4_prob']
feature_cols2 = ['label_playerId', 'label_primaryPositionName', 'label_teamId',
'label_status', 'battingOrder', 'gamesPlayedBatting', 'flyOuts',
'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns',
'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch',
'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay',
'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi',
'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference',
'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching',
'completeGamesPitching', 'shutoutsPitching', 'winsPitching',
'lossesPitching', 'flyOutsPitching', 'airOutsPitching',
'groundOutsPitching', 'runsPitching', 'doublesPitching',
'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching',
'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching',
'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching',
'stolenBasesPitching', 'inningsPitched', 'saveOpportunities',
'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls',
'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching',
'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners',
'inheritedRunnersScored', 'catchersInterferencePitching',
'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves',
'assists', 'putOuts', 'errors', 'chances','target1_mean',
'target1_median',
'target1_std',
'target1_min',
'target1_max',
'target1_prob',
'target2_mean',
'target2_median',
'target2_std',
'target2_min',
'target2_max',
'target2_prob',
'target3_mean',
'target3_median',
'target3_std',
'target3_min',
'target3_max',
'target3_prob',
'target4_mean',
'target4_median',
'target4_std',
'target4_min',
'target4_max',
'target4_prob',
'target1']
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.244866Z","iopub.execute_input":"2021-06-26T07:16:54.24532Z","iopub.status.idle":"2021-06-26T07:16:54.296844Z","shell.execute_reply.started":"2021-06-26T07:16:54.245257Z","shell.execute_reply":"2021-06-26T07:16:54.295689Z"}}
player_target_stats = pd.read_csv("../input/player-target-stats/player_target_stats.csv")
data_names=player_target_stats.columns.values.tolist()
data_names
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.300157Z","iopub.execute_input":"2021-06-26T07:16:54.300622Z","iopub.status.idle":"2021-06-26T07:17:02.252208Z","shell.execute_reply.started":"2021-06-26T07:16:54.300578Z","shell.execute_reply":"2021-06-26T07:17:02.250423Z"}}
# creat dataset
train = targets[targets_cols].merge(players[players_cols], on=['playerId'], how='left')
train = train.merge(rosters[rosters_cols], on=['playerId', 'date'], how='left')
train = train.merge(scores[scores_cols], on=['playerId', 'date'], how='left')
train = train.merge(player_target_stats, how='inner', left_on=["playerId"],right_on=["playerId"])
# label encoding
player2num = {c: i for i, c in enumerate(train['playerId'].unique())}
position2num = {c: i for i, c in enumerate(train['primaryPositionName'].unique())}
teamid2num = {c: i for i, c in enumerate(train['teamId'].unique())}
status2num = {c: i for i, c in enumerate(train['status'].unique())}
train['label_playerId'] = train['playerId'].map(player2num)
train['label_primaryPositionName'] = train['primaryPositionName'].map(position2num)
train['label_teamId'] = train['teamId'].map(teamid2num)
train['label_status'] = train['status'].map(status2num)
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.253453Z","iopub.status.idle":"2021-06-26T07:17:02.254076Z"}}
train_X = train[feature_cols]
train_y = train[['target1', 'target2', 'target3', 'target4']]
_index = (train['date'] < 20210401)
x_train1 = train_X.loc[_index].reset_index(drop=True)
y_train1 = train_y.loc[_index].reset_index(drop=True)
x_valid1 = train_X.loc[~_index].reset_index(drop=True)
y_valid1 = train_y.loc[~_index].reset_index(drop=True)
# %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.255068Z","iopub.status.idle":"2021-06-26T07:17:02.255685Z"}}
train_X = train[feature_cols2]
train_y = train[['target1', 'target2', 'target3', 'target4']]
_index = (train['date'] < 20210401)
x_train2 = train_X.loc[_index].reset_index(drop=True)
y_train2 = train_y.loc[_index].reset_index(drop=True)
x_valid2 = train_X.loc[~_index].reset_index(drop=True)
y_valid2 = train_y.loc[~_index].reset_index(drop=True)
# %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.256629Z","iopub.status.idle":"2021-06-26T07:17:02.257215Z"}}
train_X
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.258224Z","iopub.status.idle":"2021-06-26T07:17:02.258854Z"}}
def fit_lgbm(x_train, y_train, x_valid, y_valid, params: dict=None, verbose=100):
oof_pred = np.zeros(len(y_valid), dtype=np.float32)
model = lgbm.LGBMRegressor(**params)
model.fit(x_train, y_train,
eval_set=[(x_valid, y_valid)],
early_stopping_rounds=verbose,
verbose=verbose)
oof_pred = model.predict(x_valid)
score = mean_absolute_error(oof_pred, y_valid)
print('mae:', score)
return oof_pred, model, score
# training lightgbm
params1 = {'objective':'mae',
'reg_alpha': 0.14947461820098767,
'reg_lambda': 0.10185644384043743,
'n_estimators': 3633,
'learning_rate': 0.08046301304430488,
'num_leaves': 674,
'feature_fraction': 0.9101240539122566,
'bagging_fraction': 0.9884451442950513,
'bagging_freq': 8,
'min_child_samples': 51}
params2 = {
'objective':'mae',
'reg_alpha': 0.1,
'reg_lambda': 0.1,
'n_estimators': 80,
'learning_rate': 0.1,
'random_state': 42,
"num_leaves": 22
}
params4 = {'objective':'mae',
'reg_alpha': 0.016468100279441976,
'reg_lambda': 0.09128335764019105,
'n_estimators': 9868,
'learning_rate': 0.10528150510326864,
'num_leaves': 157,
'feature_fraction': 0.5419185713426886,
'bagging_fraction': 0.2637405128936662,
'bagging_freq': 19,
'min_child_samples': 71}
params = {
'objective':'mae',
'reg_alpha': 0.1,
'reg_lambda': 0.1,
'n_estimators': 10000,
'learning_rate': 0.1,
'random_state': 42,
"num_leaves": 100
}
# Slow from this point !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
oof1, model1, score1 = fit_lgbm(
x_train1, y_train1['target1'],
x_valid1, y_valid1['target1'],
params1
)
oof2, model2, score2 = fit_lgbm(
x_train2, y_train2['target2'],
x_valid2, y_valid2['target2'],
params2
)
oof3, model3, score3 = fit_lgbm(
x_train2, y_train2['target3'],
x_valid2, y_valid2['target3'],
params
)
oof4, model4, score4 = fit_lgbm(
x_train2, y_train2['target4'],
x_valid2, y_valid2['target4'],
params4
)
score = (score1+score2+score3+score4) / 4
print(f'score: {score}')
# %% [code]
import pickle
from catboost import CatBoostRegressor
def fit_lgbm(x_train, y_train, x_valid, y_valid, target, params: dict=None, verbose=100):
oof_pred_lgb = np.zeros(len(y_valid), dtype=np.float32)
oof_pred_cat = np.zeros(len(y_valid), dtype=np.float32)
if os.path.isfile(f'../input/mlb-lgbm-and-catboost-models/model_lgb_{target}.pkl'):
with open(f'../input/mlb-lgbm-and-catboost-models/model_lgb_{target}.pkl', 'rb') as fin:
model = pickle.load(fin)
else:
model = lgbm.LGBMRegressor(**params)
model.fit(x_train, y_train,
eval_set=[(x_valid, y_valid)],
early_stopping_rounds=verbose,
verbose=verbose)
with open(f'model_lgb_{target}.pkl', 'wb') as handle:
pickle.dump(model, handle, protocol=pickle.HIGHEST_PROTOCOL)
oof_pred_lgb = model.predict(x_valid)
score_lgb = mean_absolute_error(oof_pred_lgb, y_valid)
print('mae:', score_lgb)
if os.path.isfile(f'../input/mlb-lgbm-and-catboost-models/model_cb_{target}.pkl'):
with open(f'../input/mlb-lgbm-and-catboost-models/model_cb_{target}.pkl', 'rb') as fin:
model_cb = pickle.load(fin)
else:
model_cb = CatBoostRegressor(
n_estimators=2000,
learning_rate=0.05,
loss_function='MAE',
eval_metric='MAE',
max_bin=50,
subsample=0.9,
colsample_bylevel=0.5,
verbose=100)
model_cb.fit(x_train, y_train, use_best_model=True,
eval_set=(x_valid, y_valid),
early_stopping_rounds=25)
with open(f'model_cb_{target}.pkl', 'wb') as handle:
pickle.dump(model_cb, handle, protocol=pickle.HIGHEST_PROTOCOL)
oof_pred_cat = model_cb.predict(x_valid)
score_cat = mean_absolute_error(oof_pred_cat, y_valid)
print('mae:', score_cat)
return oof_pred_lgb, model, oof_pred_cat, model_cb, score_lgb, score_cat
# training lightgbm
params = {
'boosting_type': 'gbdt',
'objective':'mae',
'subsample': 0.5,
'subsample_freq': 1,
'learning_rate': 0.03,
'num_leaves': 2**11-1,
'min_data_in_leaf': 2**12-1,
'feature_fraction': 0.5,
'max_bin': 100,
'n_estimators': 2500,
'boost_from_average': False,
"random_seed":42,
}
oof_pred_lgb2, model_lgb2, oof_pred_cat2, model_cb2, score_lgb2, score_cat2 = fit_lgbm(
x_train1, y_train1['target2'],
x_valid1, y_valid1['target2'],
2, params
)
oof_pred_lgb1, model_lgb1, oof_pred_cat1, model_cb1, score_lgb1, score_cat1 = fit_lgbm(
x_train1, y_train1['target1'],
x_valid1, y_valid1['target1'],
1, params
)
oof_pred_lgb3, model_lgb3, oof_pred_cat3, model_cb3, score_lgb3, score_cat3 = fit_lgbm(
x_train1, y_train1['target3'],
x_valid1, y_valid1['target3'],
3, params
)
oof_pred_lgb4, model_lgb4, oof_pred_cat4, model_cb4, score_lgb4, score_cat4= fit_lgbm(
x_train1, y_train1['target4'],
x_valid1, y_valid1['target4'],
4, params
)
score = (score_lgb1+score_lgb2+score_lgb3+score_lgb4) / 4
print(f'LightGBM score: {score}')
score = (score_cat1+score_cat2+score_cat3+score_cat4) / 4
print(f'Catboost score: {score}')
# %% [markdown]
# ## Inference
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.259872Z","iopub.status.idle":"2021-06-26T07:17:02.260506Z"}}
players_cols = ['playerId', 'primaryPositionName']
rosters_cols = ['playerId', 'teamId', 'status']
scores_cols = ['playerId', 'battingOrder', 'gamesPlayedBatting', 'flyOuts',
'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns',
'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch',
'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay',
'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi',
'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference',
'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching',
'completeGamesPitching', 'shutoutsPitching', 'winsPitching',
'lossesPitching', 'flyOutsPitching', 'airOutsPitching',
'groundOutsPitching', 'runsPitching', 'doublesPitching',
'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching',
'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching',
'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching',
'stolenBasesPitching', 'inningsPitched', 'saveOpportunities',
'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls',
'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching',
'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners',
'inheritedRunnersScored', 'catchersInterferencePitching',
'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves',
'assists', 'putOuts', 'errors', 'chances']
null = np.nan
true = True
false = False
# %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.26162Z","iopub.status.idle":"2021-06-26T07:17:02.262287Z"}}
import pandas as pd
import numpy as np
from datetime import timedelta
from tqdm import tqdm
import gc
from functools import reduce
from sklearn.model_selection import StratifiedKFold
ROOT_DIR = "../input/mlb-player-digital-engagement-forecasting"
#=======================#
def flatten(df, col):
du = (df.pivot(index="playerId", columns="EvalDate",
values=col).add_prefix(f"{col}_").
rename_axis(None, axis=1).reset_index())
return du
#============================#
def reducer(left, right):
return left.merge(right, on="playerId")
#========================
TGTCOLS = ["target1","target2","target3","target4"]
def train_lag(df, lag=1):
dp = df[["playerId","EvalDate"]+TGTCOLS].copy()
dp["EvalDate"] =dp["EvalDate"] + timedelta(days=lag)
df = df.merge(dp, on=["playerId", "EvalDate"], suffixes=["",f"_{lag}"], how="left")
return df
#=================================
def test_lag(sub):
sub["playerId"] = sub["date_playerId"].apply(lambda s: int( s.split("_")[1] ) )
assert sub.date.nunique() == 1
dte = sub["date"].unique()[0]
eval_dt = pd.to_datetime(dte, format="%Y%m%d")
dtes = [eval_dt + timedelta(days=-k) for k in LAGS]
mp_dtes = {eval_dt + timedelta(days=-k):k for k in LAGS}
sl = LAST.loc[LAST.EvalDate.between(dtes[-1], dtes[0]), ["EvalDate","playerId"]+TGTCOLS].copy()
sl["EvalDate"] = sl["EvalDate"].map(mp_dtes)
du = [flatten(sl, col) for col in TGTCOLS]
du = reduce(reducer, du)
return du, eval_dt
#
#===============
tr = pd.read_csv("../input/mlb-data/target.csv")
print(tr.shape)
gc.collect()
tr["EvalDate"] = pd.to_datetime(tr["EvalDate"])
tr["EvalDate"] = tr["EvalDate"] + timedelta(days=-1)
tr["EvalYear"] = tr["EvalDate"].dt.year
MED_DF = tr.groupby(["playerId","EvalYear"])[TGTCOLS].median().reset_index()
MEDCOLS = ["tgt1_med","tgt2_med", "tgt3_med", "tgt4_med"]
MED_DF.columns = ["playerId","EvalYear"] + MEDCOLS
LAGS = list(range(1,21))
FECOLS = [f"{col}_{lag}" for lag in reversed(LAGS) for col in TGTCOLS]
for lag in tqdm(LAGS):
tr = train_lag(tr, lag=lag)
gc.collect()
#===========
tr = tr.sort_values(by=["playerId", "EvalDate"])
print(tr.shape)
tr = tr.dropna()
print(tr.shape)
tr = tr.merge(MED_DF, on=["playerId","EvalYear"])
gc.collect()
X = tr[FECOLS+MEDCOLS].values
y = tr[TGTCOLS].values
cl = tr["playerId"].values
NFOLDS = 6
skf = StratifiedKFold(n_splits=NFOLDS)
folds = skf.split(X, cl)
folds = list(folds)
import tensorflow as tf
import tensorflow.keras.layers as L
import tensorflow.keras.models as M
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
tf.random.set_seed(777)
def make_model(n_in):
inp = L.Input(name="inputs", shape=(n_in,))
x = L.Dense(50, activation="relu", name="d1")(inp)
x = L.Dense(50, activation="relu", name="d2")(x)
preds = L.Dense(4, activation="linear", name="preds")(x)
model = M.Model(inp, preds, name="ANN")
model.compile(loss="mean_absolute_error", optimizer="adam")
return model
net = make_model(X.shape[1])
print(net.summary())
oof = np.zeros(y.shape)
nets = []
for idx in range(NFOLDS):
print("FOLD:", idx)
tr_idx, val_idx = folds[idx]
ckpt = ModelCheckpoint(f"w{idx}.h5", monitor='val_loss', verbose=1, save_best_only=True,mode='min')
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,patience=3, min_lr=0.0005)
es = EarlyStopping(monitor='val_loss', patience=6)
reg = make_model(X.shape[1])
# reg.fit(X[tr_idx], y[tr_idx], epochs=10, batch_size=35_000, validation_data=(X[val_idx], y[val_idx]),
# verbose=1, callbacks=[ckpt, reduce_lr, es])
reg.load_weights(f"w{idx}.h5")
oof[val_idx] = reg.predict(X[val_idx], batch_size=50_000, verbose=1)
nets.append(reg)
gc.collect()
#
#
mae = mean_absolute_error(y, oof)
mse = mean_squared_error(y, oof, squared=False)
print("mae:", mae)
print("mse:", mse)
# Historical information to use in prediction time
bound_dt = pd.to_datetime("2021-01-01")
LAST = tr.loc[tr.EvalDate>bound_dt].copy()
LAST_MED_DF = MED_DF.loc[MED_DF.EvalYear==2021].copy()
LAST_MED_DF.drop("EvalYear", axis=1, inplace=True)
del tr
#"""
import mlb
FE = []; SUB = [];
# %% [markdown]
# <div class="alert alert-success">
# </div>
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.263332Z","iopub.status.idle":"2021-06-26T07:17:02.263974Z"}}
import copy
env = mlb.make_env() # initialize the environment
iter_test = env.iter_test() # iterator which loops over each date in test set
for (test_df, sample_prediction_df) in iter_test: # make predictions here
sub = copy.deepcopy(sample_prediction_df.reset_index())
sample_prediction_df = copy.deepcopy(sample_prediction_df.reset_index(drop=True))
# LGBM summit
# creat dataset
sample_prediction_df['playerId'] = sample_prediction_df['date_playerId']\
.map(lambda x: int(x.split('_')[1]))
# Dealing with missing values
if test_df['rosters'].iloc[0] == test_df['rosters'].iloc[0]:
test_rosters = pd.DataFrame(eval(test_df['rosters'].iloc[0]))
else:
test_rosters = pd.DataFrame({'playerId': sample_prediction_df['playerId']})
for col in rosters.columns:
if col == 'playerId': continue
test_rosters[col] = np.nan
if test_df['playerBoxScores'].iloc[0] == test_df['playerBoxScores'].iloc[0]:
test_scores = pd.DataFrame(eval(test_df['playerBoxScores'].iloc[0]))
else:
test_scores = pd.DataFrame({'playerId': sample_prediction_df['playerId']})
for col in scores.columns:
if col == 'playerId': continue
test_scores[col] = np.nan
test_scores = test_scores.groupby('playerId').sum().reset_index()
test = sample_prediction_df[['playerId']].copy()
test = test.merge(players[players_cols], on='playerId', how='left')
test = test.merge(test_rosters[rosters_cols], on='playerId', how='left')
test = test.merge(test_scores[scores_cols], on='playerId', how='left')
test = test.merge(player_target_stats, how='inner', left_on=["playerId"],right_on=["playerId"])
test['label_playerId'] = test['playerId'].map(player2num)
test['label_primaryPositionName'] = test['primaryPositionName'].map(position2num)
test['label_teamId'] = test['teamId'].map(teamid2num)
test['label_status'] = test['status'].map(status2num)
test_X = test[feature_cols]
# predict
pred1 = model1.predict(test_X)
# predict
pred_lgd1 = model_lgb1.predict(test_X)
pred_lgd2 = model_lgb2.predict(test_X)
pred_lgd3 = model_lgb3.predict(test_X)
pred_lgd4 = model_lgb4.predict(test_X)
pred_cat1 = model_cb1.predict(test_X)
pred_cat2 = model_cb2.predict(test_X)
pred_cat3 = model_cb3.predict(test_X)
pred_cat4 = model_cb4.predict(test_X)
test['target1'] = np.clip(pred1,0,100)
test_X = test[feature_cols2]
pred2 = model2.predict(test_X)
pred3 = model3.predict(test_X)
pred4 = model4.predict(test_X)
# merge submission
sample_prediction_df['target1'] = 0.65*np.clip(pred1, 0, 100)+0.25*np.clip(pred_lgd1, 0, 100)+0.10*np.clip(pred_cat1, 0, 100)
sample_prediction_df['target2'] = 0.65*np.clip(pred2, 0, 100)+0.25*np.clip(pred_lgd2, 0, 100)+0.10*np.clip(pred_cat2, 0, 100)
sample_prediction_df['target3'] = 0.65*np.clip(pred3, 0, 100)+0.25*np.clip(pred_lgd3, 0, 100)+0.10*np.clip(pred_cat3, 0, 100)
sample_prediction_df['target4'] = 0.65*np.clip(pred4, 0, 100)+0.25*np.clip(pred_lgd4, 0, 100)+0.10*np.clip(pred_cat4, 0, 100)
sample_prediction_df = sample_prediction_df.fillna(0.)
del sample_prediction_df['playerId']
# TF summit
# Features computation at Evaluation Date
sub_fe, eval_dt = test_lag(sub)
sub_fe = sub_fe.merge(LAST_MED_DF, on="playerId", how="left")
sub_fe = sub_fe.fillna(0.)
_preds = 0.
for reg in nets:
_preds += reg.predict(sub_fe[FECOLS + MEDCOLS]) / NFOLDS
sub_fe[TGTCOLS] = np.clip(_preds, 0, 100)
sub.drop(["date"]+TGTCOLS, axis=1, inplace=True)
sub = sub.merge(sub_fe[["playerId"]+TGTCOLS], on="playerId", how="left")
sub.drop("playerId", axis=1, inplace=True)
sub = sub.fillna(0.)
# Blending
blend = pd.concat(
[sub[['date_playerId']],
(0.35*sub.drop('date_playerId', axis=1) + 0.65*sample_prediction_df.drop('date_playerId', axis=1))],
axis=1
)
env.predict(blend)
# Update Available information
sub_fe["EvalDate"] = eval_dt
#sub_fe.drop(MEDCOLS, axis=1, inplace=True)
LAST = LAST.append(sub_fe)
LAST = LAST.drop_duplicates(subset=["EvalDate","playerId"], keep="last")
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.264951Z","iopub.status.idle":"2021-06-26T07:17:02.265581Z"}}
pd.concat(
[sub[['date_playerId']],
(sub.drop('date_playerId', axis=1) + sample_prediction_df.drop('date_playerId', axis=1)) / 2],
axis=1
)
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.26657Z","iopub.status.idle":"2021-06-26T07:17:02.267169Z"}}
sample_prediction_df
# %% [markdown]
# <div class="alert alert-success">
# </div>

File diff suppressed because it is too large Load Diff

@ -1,168 +0,0 @@
#!/usr/bin/env python
# coding: utf-8
# # Overview
# The kernel shows how to use the [tf_pose_estimation](https://github.com/ildoonet/tf-pose-estimation) package in Python on a series of running videos.
# ## Libraries we need
# Install tf_pose and pycocotools
# In[1]:
import os
def get_ipython():
return os
get_ipython().system('pip install -qq https://www.github.com/ildoonet/tf-pose-estimation')
# In[2]:
get_ipython().system('pip install -qq pycocotools')
# In[3]:
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8, 8)
plt.rcParams["figure.dpi"] = 125
plt.rcParams["font.size"] = 14
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['DejaVu Sans']
plt.style.use('ggplot')
sns.set_style("whitegrid", {'axes.grid': False})
# In[4]:
get_ipython().run_line_magic('matplotlib', 'inline')
import tf_pose
import cv2
from glob import glob
from tqdm import tqdm_notebook
from PIL import Image
import numpy as np
import os
def video_gen(in_path):
c_cap = cv2.VideoCapture(in_path)
while c_cap.isOpened():
ret, frame = c_cap.read()
if not ret:
break
yield c_cap.get(cv2.CAP_PROP_POS_MSEC), frame[:, :, ::-1]
c_cap.release()
# In[5]:
video_paths = glob('../input/*.mp4')
c_video = video_gen(video_paths[0])
for _ in range(300):
c_ts, c_frame = next(c_video)
plt.imshow(c_frame)
# In[6]:
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import get_graph_path, model_wh
tfpe = tf_pose.get_estimator()
# In[7]:
humans = tfpe.inference(npimg=c_frame, upsample_size=4.0)
print(humans)
# In[8]:
new_image = TfPoseEstimator.draw_humans(c_frame[:, :, ::-1], humans, imgcopy=False)
fig, ax1 = plt.subplots(1, 1, figsize=(10, 10))
ax1.imshow(new_image[:, :, ::-1])
# In[9]:
body_to_dict = lambda c_fig: {'bp_{}_{}'.format(k, vec_name): vec_val
for k, part_vec in c_fig.body_parts.items()
for vec_name, vec_val in zip(['x', 'y', 'score'],
(part_vec.x, 1-part_vec.y, part_vec.score))}
c_fig = humans[0]
body_to_dict(c_fig)
# In[10]:
MAX_FRAMES = 200
body_pose_list = []
for vid_path in tqdm_notebook(video_paths, desc='Files'):
c_video = video_gen(vid_path)
c_ts, c_frame = next(c_video)
out_path = '{}_out.avi'.format(os.path.split(vid_path)[1])
out = cv2.VideoWriter(out_path,
cv2.VideoWriter_fourcc('M','J','P','G'),
10,
(c_frame.shape[1], c_frame.shape[0]))
for (c_ts, c_frame), _ in zip(c_video,
tqdm_notebook(range(MAX_FRAMES), desc='Frames')):
bgr_frame = c_frame[:,:,::-1]
humans = tfpe.inference(npimg=bgr_frame, upsample_size=4.0)
for c_body in humans:
body_pose_list += [dict(video=out_path, time=c_ts, **body_to_dict(c_body))]
new_image = TfPoseEstimator.draw_humans(bgr_frame, humans, imgcopy=False)
out.write(new_image)
out.release()
# In[11]:
import pandas as pd
body_pose_df = pd.DataFrame(body_pose_list)
body_pose_df.describe()
# In[12]:
fig, m_axs = plt.subplots(1, 2, figsize=(15, 5))
for c_ax, (c_name, c_rows) in zip(m_axs, body_pose_df.groupby('video')):
for i in range(17):
c_ax.plot(c_rows['time'], c_rows['bp_{}_y'.format(i)], label='x {}'.format(i))
c_ax.legend()
c_ax.set_title(c_name)
# In[13]:
fig, m_axs = plt.subplots(1, 2, figsize=(15, 5))
for c_ax, (c_name, n_rows) in zip(m_axs, body_pose_df.groupby('video')):
for i in range(17):
c_rows = n_rows.query('bp_{}_score>0.6'.format(i)) # only keep confident results
c_ax.plot(c_rows['bp_{}_x'.format(i)], c_rows['bp_{}_y'.format(i)], label='BP {}'.format(i))
c_ax.legend()
c_ax.set_title(c_name)
# In[14]:
body_pose_df.to_csv('body_pose.csv', index=False)
# In[15]:

@ -1,576 +0,0 @@
#!/usr/bin/env python
# coding: utf-8
#
#
# NOTE: Turn on Internet and GPU
# The code hidden below handles all the imports and function definitions (the heavy lifting). If you're a beginner I'd advice you skip this for now. When you are able to understand the rest of the code, come back here and understand each function to get a deeper knowledge.
# In[1]:
# !/usr/bin/env python3
# coding=utf-8
# author=dave.fang@outlook.com
# create=20171225
import os
import pprint
import cv2
import sys
import math
import time
import tempfile
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.autograd import Variable
from scipy.ndimage.filters import gaussian_filter
#get_ipython().run_line_magic('matplotlib', 'inline')
#get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
# find connection in the specified sequence, center 29 is in the position 15
limb_seq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
map_ids = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
[55, 56], [37, 38], [45, 46]]
# these are the colours for the 18 body points
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
class PoseEstimation(nn.Module):
def __init__(self, model_dict):
super(PoseEstimation, self).__init__()
self.model0 = model_dict['block_0']
self.model1_1 = model_dict['block1_1']
self.model2_1 = model_dict['block2_1']
self.model3_1 = model_dict['block3_1']
self.model4_1 = model_dict['block4_1']
self.model5_1 = model_dict['block5_1']
self.model6_1 = model_dict['block6_1']
self.model1_2 = model_dict['block1_2']
self.model2_2 = model_dict['block2_2']
self.model3_2 = model_dict['block3_2']
self.model4_2 = model_dict['block4_2']
self.model5_2 = model_dict['block5_2']
self.model6_2 = model_dict['block6_2']
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
def make_layers(layer_dict):
layers = []
for i in range(len(layer_dict) - 1):
layer = layer_dict[i]
for k in layer:
v = layer[k]
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
layer = list(layer_dict[-1].keys())
k = layer[0]
v = layer_dict[-1][k]
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d]
return nn.Sequential(*layers)
def get_pose_model():
blocks = {}
block_0 = [{'conv1_1': [3, 64, 3, 1, 1]}, {'conv1_2': [64, 64, 3, 1, 1]}, {'pool1_stage1': [2, 2, 0]},
{'conv2_1': [64, 128, 3, 1, 1]}, {'conv2_2': [128, 128, 3, 1, 1]}, {'pool2_stage1': [2, 2, 0]},
{'conv3_1': [128, 256, 3, 1, 1]}, {'conv3_2': [256, 256, 3, 1, 1]}, {'conv3_3': [256, 256, 3, 1, 1]},
{'conv3_4': [256, 256, 3, 1, 1]}, {'pool3_stage1': [2, 2, 0]}, {'conv4_1': [256, 512, 3, 1, 1]},
{'conv4_2': [512, 512, 3, 1, 1]}, {'conv4_3_CPM': [512, 256, 3, 1, 1]},
{'conv4_4_CPM': [256, 128, 3, 1, 1]}]
blocks['block1_1'] = [{'conv5_1_CPM_L1': [128, 128, 3, 1, 1]}, {'conv5_2_CPM_L1': [128, 128, 3, 1, 1]},
{'conv5_3_CPM_L1': [128, 128, 3, 1, 1]}, {'conv5_4_CPM_L1': [128, 512, 1, 1, 0]},
{'conv5_5_CPM_L1': [512, 38, 1, 1, 0]}]
blocks['block1_2'] = [{'conv5_1_CPM_L2': [128, 128, 3, 1, 1]}, {'conv5_2_CPM_L2': [128, 128, 3, 1, 1]},
{'conv5_3_CPM_L2': [128, 128, 3, 1, 1]}, {'conv5_4_CPM_L2': [128, 512, 1, 1, 0]},
{'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}]
for i in range(2, 7):
blocks['block%d_1' % i] = [{'Mconv1_stage%d_L1' % i: [185, 128, 7, 1, 3]},
{'Mconv2_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv3_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv4_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv5_stage%d_L1' % i: [128, 128, 7, 1, 3]},
{'Mconv6_stage%d_L1' % i: [128, 128, 1, 1, 0]},
{'Mconv7_stage%d_L1' % i: [128, 38, 1, 1, 0]}]
blocks['block%d_2' % i] = [{'Mconv1_stage%d_L2' % i: [185, 128, 7, 1, 3]},
{'Mconv2_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv3_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv4_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv5_stage%d_L2' % i: [128, 128, 7, 1, 3]},
{'Mconv6_stage%d_L2' % i: [128, 128, 1, 1, 0]},
{'Mconv7_stage%d_L2' % i: [128, 19, 1, 1, 0]}]
layers = []
for block in block_0:
# print(block)
for key in block:
v = block[key]
if 'pool' in key:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
models = {
'block_0': nn.Sequential(*layers)
}
for k in blocks:
v = blocks[k]
models[k] = make_layers(v)
return PoseEstimation(models)
def get_paf_and_heatmap(model, img_raw, scale_search, param_stride=8, box_size=368):
multiplier = [scale * box_size / img_raw.shape[0] for scale in scale_search]
heatmap_avg = torch.zeros((len(multiplier), 19, img_raw.shape[0], img_raw.shape[1])).cuda()
paf_avg = torch.zeros((len(multiplier), 38, img_raw.shape[0], img_raw.shape[1])).cuda()
for i, scale in enumerate(multiplier):
img_test = cv2.resize(img_raw, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
img_test_pad, pad = pad_right_down_corner(img_test, param_stride, param_stride)
img_test_pad = np.transpose(np.float32(img_test_pad[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
feed = Variable(torch.from_numpy(img_test_pad)).cuda()
output1, output2 = model(feed)
print(output1.size())
print(output2.size())
heatmap = nn.UpsamplingBilinear2d((img_raw.shape[0], img_raw.shape[1])).cuda()(output2)
paf = nn.UpsamplingBilinear2d((img_raw.shape[0], img_raw.shape[1])).cuda()(output1)
heatmap_avg[i] = heatmap[0].data
paf_avg[i] = paf[0].data
heatmap_avg = torch.transpose(torch.transpose(torch.squeeze(torch.mean(heatmap_avg, 0)), 0, 1), 1, 2).cuda()
heatmap_avg = heatmap_avg.cpu().numpy()
paf_avg = torch.transpose(torch.transpose(torch.squeeze(torch.mean(paf_avg, 0)), 0, 1), 1, 2).cuda()
paf_avg = paf_avg.cpu().numpy()
return paf_avg, heatmap_avg
def extract_heatmap_info(heatmap_avg, param_thre1=0.1):
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map_gau = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map_gau.shape)
map_left[1:, :] = map_gau[:-1, :]
map_right = np.zeros(map_gau.shape)
map_right[:-1, :] = map_gau[1:, :]
map_up = np.zeros(map_gau.shape)
map_up[:, 1:] = map_gau[:, :-1]
map_down = np.zeros(map_gau.shape)
map_down[:, :-1] = map_gau[:, 1:]
peaks_binary = np.logical_and.reduce(
(map_gau >= map_left, map_gau >= map_right, map_gau >= map_up,
map_gau >= map_down, map_gau > param_thre1))
peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse
peaks = list(peaks)
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
ids = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (ids[i],) for i in range(len(ids))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
return all_peaks
def extract_paf_info(img_raw, paf_avg, all_peaks, param_thre2=0.05, param_thre3=0.5):
connection_all = []
special_k = []
mid_num = 10
for k in range(len(map_ids)):
score_mid = paf_avg[:, :, [x - 19 for x in map_ids[k]]]
candA = all_peaks[limb_seq[k][0] - 1]
candB = all_peaks[limb_seq[k][1] - 1]
nA = len(candA)
nB = len(candB)
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
vec = np.divide(vec, norm)
startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num))
startend = list(startend)
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts)
score_with_dist_prior += min(0.5 * img_raw.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > param_thre2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
return special_k, connection_all
def get_subsets(connection_all, special_k, all_peaks):
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(map_ids)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limb_seq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if (subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
print("found = 2")
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
return subset, candidate
def draw_key_point(subset, all_peaks, img_raw):
del_ids = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
del_ids.append(i)
subset = np.delete(subset, del_ids, axis=0)
img_canvas = img_raw.copy() # B,G,R order
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(img_canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
return subset, img_canvas
def link_key_point(img_canvas, candidate, subset, stickwidth=4):
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limb_seq[i]) - 1]
if -1 in index:
continue
cur_canvas = img_canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
img_canvas = cv2.addWeighted(img_canvas, 0.4, cur_canvas, 0.6, 0)
return img_canvas
def pad_right_down_corner(img, stride, pad_value):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + pad_value, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + pad_value, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + pad_value, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + pad_value, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
if __name__ == '__main__':
print(get_pose_model())
# First let's download the pre-trained model.
# In[2]:
# Using gdown to download the model directly from Google Drive
#assert os.system(' conda install -y gdown') == 0
import gdown
# In[3]:
model = 'coco_pose_iter_440000.pth.tar'
if not os.path.exists(model):
url = 'https://drive.google.com/u/0/uc?export=download&confirm=f_Ix&id=0B1asvDK18cu_MmY1ZkpaOUhhRHM'
gdown.download(
url,
model,
quiet=False
)
# In[4]:
state_dict = torch.load('./coco_pose_iter_440000.pth.tar')['state_dict'] # getting the pre-trained model's parameters
# A state_dict is simply a Python dictionary object that maps each layer to its parameter tensor.
model_pose = get_pose_model() # building the model (see fn. defn. above). To see the architecture, see below cell.
model_pose.load_state_dict(state_dict) # Loading the parameters (weights, biases) into the model.
model_pose.float() # I'm not sure why this is used. No difference if you remove it.
# In[5]:
arch_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0000.jpg'
img_ori = cv2.imread(arch_image)
plt.figure(figsize=(15, 8))
plt.imshow(img_ori[...,::-1])
# Notice, the first 10 layers are from VGG-19. But here instead of downloading the model and loading the layers from there, we simply hardcoaded it in get_pose_model()
# In[6]:
# Run this to view the model's architecture
#model_pose.eval()
# In[7]:
use_gpu = True
if use_gpu:
model_pose.cuda()
model_pose = torch.nn.DataParallel(model_pose, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# In[8]:
def estimate_pose(img_ori, name=None):
if name is None:
name = tempfile.mktemp(
dir='/kaggle/working',
suffix='.png',
)
pprint.pprint(
['estimate_pose', dict(name=name)],
)
# People might be at different scales in the image, perform inference at multiple scales to boost results
scale_param = [0.5, 1.0, 1.5, 2.0]
# Predict Heatmaps for approximate joint position
# Use Part Affinity Fields (PAF's) as guidance to link joints to form skeleton
# PAF's are just unit vectors along the limb encoding the direction of the limb
# A dot product of possible joint connection will be high if actual limb else low
paf_info, heatmap_info = get_paf_and_heatmap(model_pose, img_ori, scale_param)
peaks = extract_heatmap_info(heatmap_info)
sp_k, con_all = extract_paf_info(img_ori, paf_info, peaks)
subsets, candidates = get_subsets(con_all, sp_k, peaks)
subsets, img_points = draw_key_point(subsets, peaks, img_ori)
# After predicting Heatmaps and PAF's, proceeed to link joints correctly
img_canvas = link_key_point(img_points, candidates, subsets)
f = plt.figure(figsize=(15, 10))
plt.subplot(1, 2, 1)
plt.imshow(img_points[...,::-1])
plt.subplot(1, 2, 2)
plt.imshow(img_canvas[...,::-1])
f.savefig(name)
# In[9]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0000.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[10]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0010.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[11]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0020.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[12]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0030.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[13]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0040.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[14]:
test_image = '../input/indonesian-traditional-dance/tgagrakanyar/tga_0050.jpg'
img_ori = cv2.imread(test_image)
estimate_pose(img_ori)
# In[ ]:

@ -1,56 +0,0 @@
import os
if os.system(r''' pip show alphapose''') != 0:
t1 = r'''
pip install pycocotools
rm -fr /kaggle/working/AlphaPose
pip install pyyaml==5.2
pip install scipy==1.1.0
git clone https://github.com/WildflowerSchools/AlphaPose
python -m pip install cython gdown
apt-get install libyaml-dev
cd /kaggle/working/AlphaPose && python setup.py build develop
'''
for o in t1.splitlines():
print(o)
assert os.system(o) == 0
import os
#!git clone https://github.com/MVIG-SJTU/AlphaPose.git
import torch
print(torch.__version__)
import yaml, scipy
print(yaml.__version__)
print(scipy.__version__)
import gdown
import os
for o1, o2 in [
(
'1D47msNOOiJKvPOXlnpyzdKA3k6E97NTC',
'/kaggle/working/AlphaPose/detector/yolo/data/yolov3-spp.weights',
),
(
'1nlnuYfGNuHWZztQHXwVZSL_FvfE551pA',
'/kaggle/working/AlphaPose/detector/tracker/data/JDE-1088x608-uncertainty',
),
(
'1kQhnMRURFiy7NsdS8EFL-8vtqEXOgECn',
'/kaggle/working/AlphaPose/pretrained_models/fast_res50_256x192.pth'
),
]:
os.makedirs(os.path.split(o2)[0], exist_ok=True)
if not os.path.exists(o2):
gdown.download(
'https://drive.google.com/u/0/uc?export=download&confirm=f_Ix&id=%s' % o1,
o2,
quiet=False
)
assert os.system(r'''
mkdir -p /kaggle/working/test-input && mkdir -p /kaggle/working/test-output && cp /kaggle/working/AlphaPose/examples/demo/*.jpg /kaggle/working/test-input
cd /kaggle/working/AlphaPose && python3 scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/fast_res50_256x192.pth --indir /kaggle/working/test-input --outdir /kaggle/working/test-output --save_img
''') == 0

@ -1,172 +0,0 @@
# https://raw.githubusercontent.com/hafizas101/Real-time-human-pose-estimation-and-classification/master/main.py
# From Python
# It requires OpenCV installed for Python
import sys
import cv2
import os
from sys import platform
import argparse
from math import sqrt, acos, degrees, atan, degrees
import numpy as np
# ----------------------------------------- Arslan Part ----------------------------------------------------------------------------------
def get_angle(a,b):
#print(a)
#print(b)
del_y = a[1]-b[1]
del_x = b[0]-a[0]
if del_x == 0:
del_x = 0.1
#print("Del_X : "+str(del_x)+"-----Del_Y: "+str(del_y))
angle = 0
if del_x > 0 and del_y > 0:
angle = degrees(atan(del_y / del_x))
elif del_x < 0 and del_y > 0:
angle = degrees(atan(del_y / del_x)) + 180
return angle
# ------------------------------------------------------------------------------------------------------------------------------------------
# ----------------------------------------- Maksim Part ----------------------------------------------------------------------------------
def angle_gor(a,b,c,d):
ab=[a[0]-b[0],a[1]-b[1]]
ab1=[c[0]-d[0],c[1]-d[1]]
cos=abs(ab[0]*ab1[0]+ab[1]*ab1[1])/(sqrt(ab[0]**2+ab[1]**2)*sqrt(ab1[0]**2+ab1[1]**2))
ang = acos(cos)
return ang*180/np.pi
def sit_ang(a,b,c,d):
ang=angle_gor(a,b,c,d)
s1=0
if ang != None:
#print("Angle",ang)
if ang < 120 and ang>40:
s1=1
return s1
def sit_rec(a,b,c,d):
ab = [a[0] - b[0], a[1] - b[1]]
ab1 = [c[0] - d[0], c[1] - d[1]]
l1=sqrt(ab[0]**2+ab[1]**2)
l2=sqrt(ab1[0]**2+ab1[1]**2)
s=0
if l1!=0 and l2!=0:
#print(l1,l2, "---------->>>")
if l2/l1>=1.5:
s=1
return s
# ------------------------------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------- OpenPose Example Code ----------------------------------------------------------
# Import Openpose (Windows/Ubuntu/OSX)
dir_path = os.path.dirname(os.path.realpath(__file__))
try:
# Windows Import
if platform == "win32":
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append(dir_path + '/../../python/openpose/Release');
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/../../x64/Release;' + dir_path + '/../../bin;'
import pyopenpose as op
else:
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append('../../python');
# If you run `make install` (default path is `/usr/local/python` for Ubuntu), you can also access the OpenPose/python module from there. This will install OpenPose and the python library at your desired installation path. Ensure that this is in your python path in order to use it.
# sys.path.append('/usr/local/python')
from openpose import pyopenpose as op
except ImportError as e:
print('Error: OpenPose library could not be found. Did you enable `BUILD_PYTHON` in CMake and have this Python script in the right folder?')
raise e
# Flags
parser = argparse.ArgumentParser()
parser.add_argument("--image_path", default="../../../examples/media/COCO_val2014_000000000192.jpg", help="Process an image. Read all standard formats (jpg, png, bmp, etc.).")
args = parser.parse_known_args()
# Custom Params (refer to include/openpose/flags.hpp for more parameters)
params = dict()
params["model_folder"] = "/home/nvidia/openpose/models/"
# Add others in path?
for i in range(0, len(args[1])):
curr_item = args[1][i]
if i != len(args[1])-1: next_item = args[1][i+1]
else: next_item = "1"
if "--" in curr_item and "--" in next_item:
key = curr_item.replace('-','')
if key not in params: params[key] = "1"
elif "--" in curr_item and "--" not in next_item:
key = curr_item.replace('-','')
if key not in params: params[key] = next_item
# Construct it from system arguments
# op.init_argv(args[1])
# oppython = op.OpenposePython()
c=0
# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()
# ------------------------------------------------------- OUR CONTRIBUTIONS ----------------------------------------------------------------
cam = cv2.VideoCapture(1)
for i in range(1000):
# Process Image
datum = op.Datum()
s, im = cam.read() # captures image
#cv2.imshow("Test Picture", im) # displays captured image
#im=cv2.resize(im,(480,270), interpolation = cv2.INTER_AREA)
image1 = im
#imageToProcess = cv2.imread(args[0].image_path)
c+=1
if c==8:
c=0
datum.cvInputData = image1
opWrapper.emplaceAndPop([datum]) # OpenPose being applied to the frame image.
# Display Image
#print("Body keypoints: \n" + str(datum.poseKeypoints))
#print(datum.poseKeypoints.shape)
if len(datum.poseKeypoints.shape)>=2:
x1=0
x2=0
for j in range(len(datum.poseKeypoints)):
x1=0
x2=0
s=0
s1=0
ang1 = get_angle(datum.poseKeypoints[j][3], datum.poseKeypoints[j][4])
ang2 = get_angle(datum.poseKeypoints[j][6], datum.poseKeypoints[j][7])
if (30 < ang1 < 150):
x1 = 1
if (30 < ang2 < 150):
x2 = 1
x3 = x1+x2
if (x3 == 1):
print("The {} person says: HELLO !".format(j+1))
#cv2.putText(datum.cvOutputData,'OpenPose using Python-OpenCV',(20,30), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),1,cv2.LINE_AA)
elif (x3 == 2):
print("The {} person says: STOP PLEASE !".format(j+1))
s += sit_rec(datum.poseKeypoints[j][9], datum.poseKeypoints[j][10],datum.poseKeypoints[j][10],datum.poseKeypoints[j][11])
s += sit_rec(datum.poseKeypoints[j][12], datum.poseKeypoints[j][13],datum.poseKeypoints[j][13],datum.poseKeypoints[j][14])
s1+=sit_ang(datum.poseKeypoints[j][9], datum.poseKeypoints[j][10],datum.poseKeypoints[j][10],datum.poseKeypoints[j][11])
s1+=sit_ang(datum.poseKeypoints[j][12], datum.poseKeypoints[j][13],datum.poseKeypoints[j][13],datum.poseKeypoints[j][14])
if s > 0 or s1>0:
print("The {} person is sitting".format(j+1))
if s == 0 and s1 == 0:
print("The {} person is standing".format(j+1))
print("___________________________")
print(" ")
im=cv2.resize(datum.cvOutputData,(960,540), interpolation = cv2.INTER_AREA)
cv2.imshow("OpenPose 1.4.0 - Tutorial Python API", im)
cv2.waitKey(1)
# ------------------------------------------------------------------------------------------------------------------------------------------

338
m.py

@ -1,338 +0,0 @@
#!/usr/bin/env python3
import glob
import io
import tempfile
import dataclasses
import pathlib
import sys
import subprocess
import os
import logging
from typing import (Optional, Any,)
from typing_extensions import (
Self, BinaryIO,
)
logger = logging.getLogger(__name__)
def toml_load(f: BinaryIO) -> Any:
try:
import tomllib
return tomllib.load(f)
except:
pass
try:
import tomli
return tomli.load(f)
except:
pass
raise NotImplementedError
@dataclasses.dataclass
class PyProject:
path: pathlib.Path
dependencies: dict[str, list[str]]
early_features: Optional[list[str]] = None
pip_find_links: Optional[list[pathlib.Path]] = None
runtime_libdirs: Optional[list[pathlib.Path]] = None
runtime_preload: Optional[list[pathlib.Path]] = None
requirements: dict[str, pathlib.Path] = dataclasses.field(default_factory=lambda : dict())
def pyproject_load(
d: pathlib.Path,
) -> PyProject:
with io.open(d, 'rb') as f:
content = toml_load(f)
assert isinstance(content, dict)
dependencies : dict[str, list[str]] = dict()
dependencies['default'] = content['project']['dependencies']
if (
'optional-dependencies' in content['project']
):
assert isinstance(
content['project']['optional-dependencies'],
dict
)
for k, v in content['project']['optional-dependencies'].items():
assert isinstance(v, list)
assert isinstance(k, str)
dependencies[k] = v
res = PyProject(
path=d,
dependencies=dependencies,
)
tool_name = 'online.fxreader.pr34'.replace('.', '-')
if (
'tool' in content and
isinstance(
content['tool'], dict
) and
tool_name in content['tool'] and
isinstance(
content['tool'][tool_name],
dict
)
):
if 'early_features' in content['tool'][tool_name]:
res.early_features = content['tool'][tool_name]['early_features']
if 'pip_find_links' in content['tool'][tool_name]:
res.pip_find_links = [
d.parent / pathlib.Path(o)
for o in content['tool'][tool_name]['pip_find_links']
]
if 'runtime_libdirs' in content['tool'][tool_name]:
res.runtime_libdirs = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_libdirs']
]
if 'runtime_preload' in content['tool'][tool_name]:
res.runtime_preload = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_preload']
]
if 'requirements' in content['tool'][tool_name]:
assert isinstance(content['tool'][tool_name]['requirements'], dict)
res.requirements = {
k : d.parent / pathlib.Path(v)
# pathlib.Path(o)
for k, v in content['tool'][tool_name]['requirements'].items()
}
return res
@dataclasses.dataclass
class BootstrapSettings:
env_path: pathlib.Path
python_path: pathlib.Path
base_dir: pathlib.Path
python_version: Optional[str] = dataclasses.field(
default_factory=lambda : os.environ.get(
'PYTHON_VERSION',
'%d.%d' % (
sys.version_info.major,
sys.version_info.minor,
),
).strip()
)
uv_args: list[str] = dataclasses.field(
default_factory=lambda : os.environ.get(
'UV_ARGS',
'--offline',
).split(),
)
@classmethod
def get(
cls,
base_dir: Optional[pathlib.Path] = None,
) -> Self:
if base_dir is None:
base_dir = pathlib.Path.cwd()
env_path = base_dir / '.venv'
python_path = env_path / 'bin' / 'python3'
return cls(
base_dir=base_dir,
env_path=env_path,
python_path=python_path,
)
def env_bootstrap(
bootstrap_settings: BootstrapSettings,
pyproject: PyProject,
) -> None:
pip_find_links : list[pathlib.Path] = []
if not pyproject.pip_find_links is None:
pip_find_links.extend(pyproject.pip_find_links)
pip_find_links_args = sum([
['-f', str(o),]
for o in pip_find_links
], [])
features : list[str] = []
if pyproject.early_features:
features.extend(pyproject.early_features)
requirements_python_version: Optional[str] = None
if not bootstrap_settings.python_version is None:
requirements_python_version = bootstrap_settings.python_version.replace('.', '_')
requirements_name = '_'.join(sorted(features))
if requirements_python_version:
requirements_name += '_' + requirements_python_version
requirements_path : Optional[pathlib.Path] = None
if requirements_name in pyproject.requirements:
requirements_path = pyproject.requirements[requirements_name]
else:
requirements_path = pyproject.path.parent / 'requirements.txt'
requirements_in : list[str] = []
requirements_in.extend([
'uv', 'pip', 'build', 'setuptools', 'meson-python', 'pybind11'
])
if pyproject.early_features:
early_dependencies = sum([
pyproject.dependencies[o]
for o in pyproject.early_features
], [])
logger.info(dict(
early_dependencies=early_dependencies,
))
requirements_in.extend(early_dependencies)
# if len(early_dependencies) > 0:
# subprocess.check_call([
# bootstrap_settings.python_path,
# '-m',
# 'uv', 'pip', 'install',
# *pip_find_links_args,
# # '-f', str(pathlib.Path(__file__).parent / 'deps' / 'dist'),
# *bootstrap_settings.uv_args,
# *early_dependencies,
# ])
if not requirements_path.exists():
with tempfile.NamedTemporaryFile(
mode='w',
prefix='requirements',
suffix='.in',
) as f:
f.write(
'\n'.join(requirements_in)
)
f.flush()
subprocess.check_call([
'uv',
'pip',
'compile',
'--generate-hashes',
*pip_find_links_args,
# '-p',
# bootstrap_settings.python_path,
*bootstrap_settings.uv_args,
'-o', str(requirements_path),
f.name,
])
uv_python_version: list[str] = []
if not bootstrap_settings.python_version is None:
uv_python_version.extend([
'-p', bootstrap_settings.python_version,
])
subprocess.check_call([
'uv', 'venv',
*uv_python_version,
*pip_find_links_args,
# '--seed',
*bootstrap_settings.uv_args,
str(bootstrap_settings.env_path)
])
subprocess.check_call([
'uv',
'pip',
'install',
*pip_find_links_args,
'-p',
bootstrap_settings.python_path,
'--require-hashes',
*bootstrap_settings.uv_args,
'-r', str(requirements_path),
])
def paths_equal(
a: pathlib.Path | str,
b: pathlib.Path | str
) -> bool:
return (
os.path.abspath(str(a)) ==
os.path.abspath(str(b))
)
def run(
d: Optional[pathlib.Path] = None,
cli_path: Optional[pathlib.Path] = None,
) -> None:
if cli_path is None:
cli_path = pathlib.Path(__file__).parent / 'cli.py'
if d is None:
d = pathlib.Path(__file__).parent / 'pyproject.toml'
bootstrap_settings = BootstrapSettings.get()
pyproject : PyProject = pyproject_load(
d
)
logging.basicConfig(level=logging.INFO)
if not bootstrap_settings.env_path.exists():
env_bootstrap(
bootstrap_settings=bootstrap_settings,
pyproject=pyproject,
)
logger.info([sys.executable, sys.argv, bootstrap_settings.python_path])
if not paths_equal(sys.executable, bootstrap_settings.python_path):
os.execv(
str(bootstrap_settings.python_path),
[
str(bootstrap_settings.python_path),
*sys.argv,
]
)
os.execv(
str(bootstrap_settings.python_path),
[
str(bootstrap_settings.python_path),
str(
cli_path
),
*sys.argv[1:],
]
)
if __name__ == '__main__':
run(
d=pathlib.Path(__file__).parent / 'python' / 'pyproject.toml',
cli_path=pathlib.Path(__file__).parent / 'python' / 'cli.py',
)

@ -0,0 +1,13 @@
[binaries]
cpp = 'em++'
c = 'emcc'
ar = 'emar'
windres = '/usr/bin/false'
; exe_wrapper = '/usr/bin/false'
exe_wrapper = 'node'
[host_machine]
system = 'linux'
cpu_family = 'x86_64'
cpu = 'x86_64'
endian = 'little'

18
python/.mypy.ini Normal file

@ -0,0 +1,18 @@
[mypy]
mypy_path =
../mypy-stubs,
../deps/com.github.aiortc.aiortc/src,
../mypy-stubs/marisa-trie-types,
../mypy-stubs/types-debugpy,
.
exclude =
tmp,
build
plugins =
numpy.typing.mypy_plugin,
pydantic.mypy
explicit_package_bases = true
namespace_packages = true

@ -28,8 +28,11 @@ logger = logging.getLogger(__name__)
class Command(enum.StrEnum):
mypy = 'mypy'
pyright = 'pyright'
ruff = 'ruff'
deploy_wheel = 'deploy:wheel'
tests = 'tests'
meson_setup = 'meson:setup'
@dataclasses.dataclass
@ -39,8 +42,8 @@ class Settings(
base_dir: pathlib.Path = pathlib.Path(__file__).parent.parent
build_dir: pathlib.Path = base_dir / 'tmp' / 'build'
wheel_dir: pathlib.Path = base_dir / 'deps' / 'dist'
env_path: pathlib.Path = cli_bootstrap.BootstrapSettings.get(base_dir).env_path
python_path: pathlib.Path = cli_bootstrap.BootstrapSettings.get(base_dir).python_path
env_path: pathlib.Path = cli_bootstrap.BootstrapSettings.get().env_path
python_path: pathlib.Path = pathlib.Path(sys.executable)
class CLI(_cli.CLI):
@ -51,6 +54,7 @@ class CLI(_cli.CLI):
source_dir=self.settings.base_dir / 'python',
build_dir=self.settings.base_dir / 'tmp' / 'online' / 'fxreader' / 'pr34' / 'build',
dest_dir=self.settings.base_dir / 'tmp' / 'online' / 'fxreader' / 'pr34' / 'install',
meson_path=self.settings.base_dir / 'python' / 'meson.build',
)
}
@ -83,16 +87,17 @@ class CLI(_cli.CLI):
project.source_dir / '_m.py',
project.source_dir / 'online',
project.source_dir / 'cli.py',
self.settings.base_dir / 'm.py',
project.source_dir / 'm.py',
# Settings.settings().project_root / 'deps/com.github.aiortc.aiortc/src',
# Settings.settings().project_root / 'm.py',
],
max_errors={
'python/online/fxreader/pr34/commands_typed': 0,
'python/cli.py': 0,
'online/fxreader/pr34/commands_typed': 0,
# 'online/fxreader/pr34/commands': 0,
'cli.py': 0,
'm.py': 0,
'deps/com.github.aiortc.aiortc/src/online_fxreader': 0,
'deps/com.github.aiortc.aiortc/src/aiortc/contrib/signaling': 0,
'../deps/com.github.aiortc.aiortc/src/online_fxreader': 0,
'../deps/com.github.aiortc.aiortc/src/aiortc/contrib/signaling': 0,
},
),
)
@ -125,6 +130,23 @@ class CLI(_cli.CLI):
options, args = parser.parse_known_args(argv[1:])
default_project: Optional[str] = None
for k, v in self.projects.items():
if cli_bootstrap.paths_equal(
v.source_dir.resolve(),
# pathlib.Path(__file__).parent.resolve(),
pathlib.Path.cwd(),
):
default_project = k
if options.project is None:
if not default_project is None:
options.project = default_project
else:
logger.error(dict(msg='not provided project name'))
raise NotImplementedError
options.command = Command(options.command)
if options.command is Command.deploy_wheel:
@ -135,6 +157,26 @@ class CLI(_cli.CLI):
argv=args,
output_dir=options.output_dir,
mypy=True,
ruff=True,
pyright=True,
)
elif options.command is Command.pyright:
self.pyright(
project_name=options.project,
argv=args,
)
elif options.command is Command.ruff:
self.ruff(
project_name=options.project,
argv=args,
)
elif options.command is Command.meson_setup:
assert not options.project is None
self.meson_setup(
project_name=options.project,
argv=args,
force=options.force,
)
elif options.command is Command.mypy:
self.mypy(

335
python/m.py Executable file

@ -0,0 +1,335 @@
#!/usr/bin/env python3
import glob
import io
import tempfile
import dataclasses
import pathlib
import sys
import subprocess
import os
import logging
from typing import (
Optional,
Any,
)
from typing_extensions import (
Self,
BinaryIO,
)
logger = logging.getLogger(__name__)
def toml_load(f: BinaryIO) -> Any:
try:
import tomllib
return tomllib.load(f)
except:
pass
try:
import tomli
return tomli.load(f)
except:
pass
raise NotImplementedError
@dataclasses.dataclass
class PyProject:
path: pathlib.Path
dependencies: dict[str, list[str]]
early_features: Optional[list[str]] = None
pip_find_links: Optional[list[pathlib.Path]] = None
runtime_libdirs: Optional[list[pathlib.Path]] = None
runtime_preload: Optional[list[pathlib.Path]] = None
requirements: dict[str, pathlib.Path] = dataclasses.field(default_factory=lambda: dict())
def pyproject_load(
d: pathlib.Path,
) -> PyProject:
with io.open(d, 'rb') as f:
content = toml_load(f)
assert isinstance(content, dict)
dependencies: dict[str, list[str]] = dict()
dependencies['default'] = content['project']['dependencies']
if 'optional-dependencies' in content['project']:
assert isinstance(content['project']['optional-dependencies'], dict)
for k, v in content['project']['optional-dependencies'].items():
assert isinstance(v, list)
assert isinstance(k, str)
dependencies[k] = v
res = PyProject(
path=d,
dependencies=dependencies,
)
tool_name = 'online.fxreader.pr34'.replace('.', '-')
if 'tool' in content and isinstance(content['tool'], dict) and tool_name in content['tool'] and isinstance(content['tool'][tool_name], dict):
if 'early_features' in content['tool'][tool_name]:
res.early_features = content['tool'][tool_name]['early_features']
if 'pip_find_links' in content['tool'][tool_name]:
res.pip_find_links = [d.parent / pathlib.Path(o) for o in content['tool'][tool_name]['pip_find_links']]
if 'runtime_libdirs' in content['tool'][tool_name]:
res.runtime_libdirs = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_libdirs']
]
if 'runtime_preload' in content['tool'][tool_name]:
res.runtime_preload = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_preload']
]
if 'requirements' in content['tool'][tool_name]:
assert isinstance(content['tool'][tool_name]['requirements'], dict)
res.requirements = {
k: d.parent / pathlib.Path(v)
# pathlib.Path(o)
for k, v in content['tool'][tool_name]['requirements'].items()
}
return res
@dataclasses.dataclass
class BootstrapSettings:
env_path: pathlib.Path
python_path: pathlib.Path
base_dir: pathlib.Path
python_version: Optional[str] = dataclasses.field(
default_factory=lambda: os.environ.get(
'PYTHON_VERSION',
'%d.%d'
% (
sys.version_info.major,
sys.version_info.minor,
),
).strip()
)
uv_args: list[str] = dataclasses.field(
default_factory=lambda: os.environ.get(
'UV_ARGS',
'--offline',
).split(),
)
@classmethod
def get(
cls,
base_dir: Optional[pathlib.Path] = None,
) -> Self:
if base_dir is None:
base_dir = pathlib.Path.cwd()
env_path = base_dir / '.venv'
python_path = env_path / 'bin' / 'python3'
return cls(
base_dir=base_dir,
env_path=env_path,
python_path=python_path,
)
def env_bootstrap(
bootstrap_settings: BootstrapSettings,
pyproject: PyProject,
) -> None:
pip_find_links: list[pathlib.Path] = []
if not pyproject.pip_find_links is None:
pip_find_links.extend(pyproject.pip_find_links)
pip_find_links_args = sum(
[
[
'-f',
str(o),
]
for o in pip_find_links
],
[],
)
features: list[str] = []
if pyproject.early_features:
features.extend(pyproject.early_features)
requirements_python_version: Optional[str] = None
if not bootstrap_settings.python_version is None:
requirements_python_version = bootstrap_settings.python_version.replace('.', '_')
requirements_name = '_'.join(sorted(features))
if requirements_python_version:
requirements_name += '_' + requirements_python_version
requirements_path: Optional[pathlib.Path] = None
if requirements_name in pyproject.requirements:
requirements_path = pyproject.requirements[requirements_name]
else:
requirements_path = pyproject.path.parent / 'requirements.txt'
requirements_in: list[str] = []
requirements_in.extend(['uv', 'pip', 'build', 'setuptools', 'meson-python', 'pybind11'])
if pyproject.early_features:
early_dependencies = sum([pyproject.dependencies[o] for o in pyproject.early_features], [])
logger.info(
dict(
early_dependencies=early_dependencies,
)
)
requirements_in.extend(early_dependencies)
# if len(early_dependencies) > 0:
# subprocess.check_call([
# bootstrap_settings.python_path,
# '-m',
# 'uv', 'pip', 'install',
# *pip_find_links_args,
# # '-f', str(pathlib.Path(__file__).parent / 'deps' / 'dist'),
# *bootstrap_settings.uv_args,
# *early_dependencies,
# ])
if not requirements_path.exists():
with tempfile.NamedTemporaryFile(
mode='w',
prefix='requirements',
suffix='.in',
) as f:
f.write('\n'.join(requirements_in))
f.flush()
subprocess.check_call(
[
'uv',
'pip',
'compile',
'--generate-hashes',
*pip_find_links_args,
# '-p',
# bootstrap_settings.python_path,
*bootstrap_settings.uv_args,
'-o',
str(requirements_path),
f.name,
]
)
uv_python_version: list[str] = []
if not bootstrap_settings.python_version is None:
uv_python_version.extend(
[
'-p',
bootstrap_settings.python_version,
]
)
subprocess.check_call(
[
'uv',
'venv',
*uv_python_version,
*pip_find_links_args,
# '--seed',
*bootstrap_settings.uv_args,
str(bootstrap_settings.env_path),
]
)
subprocess.check_call(
[
'uv',
'pip',
'install',
*pip_find_links_args,
'-p',
bootstrap_settings.python_path,
'--require-hashes',
*bootstrap_settings.uv_args,
'-r',
str(requirements_path),
]
)
def paths_equal(a: pathlib.Path | str, b: pathlib.Path | str) -> bool:
return os.path.abspath(str(a)) == os.path.abspath(str(b))
def run(
d: Optional[pathlib.Path] = None,
cli_path: Optional[pathlib.Path] = None,
) -> None:
if cli_path is None:
cli_path = pathlib.Path(__file__).parent / 'cli.py'
if d is None:
d = pathlib.Path(__file__).parent / 'pyproject.toml'
bootstrap_settings = BootstrapSettings.get()
pyproject: PyProject = pyproject_load(d)
logging.basicConfig(level=logging.INFO)
if not bootstrap_settings.env_path.exists():
env_bootstrap(
bootstrap_settings=bootstrap_settings,
pyproject=pyproject,
)
logger.info([sys.executable, sys.argv, bootstrap_settings.python_path])
if not paths_equal(sys.executable, bootstrap_settings.python_path):
os.execv(
str(bootstrap_settings.python_path),
[
str(bootstrap_settings.python_path),
*sys.argv,
],
)
os.execv(
str(bootstrap_settings.python_path),
[
str(bootstrap_settings.python_path),
str(cli_path),
*sys.argv[1:],
],
)
if __name__ == '__main__':
run(
d=pathlib.Path(__file__).parent / 'pyproject.toml',
cli_path=pathlib.Path(__file__).parent / 'cli.py',
)

87
python/meson.build Normal file

@ -0,0 +1,87 @@
project(
run_command(
'tomlq', '-r', '.project.name', 'pyproject.toml',
check: true
).stdout().strip('\n'),
# 'online.fxreader.uv',
# ['c', 'cpp'],
version: '0.1.5.16+27.21',
# default_options: [
# 'cpp_std=c++23',
# # 'prefer_static=true',
# ],
)
install_path = get_option('install_path')
message('install_path = ' + install_path)
modes = get_option('modes')
fs = import('fs')
assert(modes.length() == 1, 'only one mode allowed')
mode = modes[0]
project_root = '.'
source_dir = project_root
include_dir = project_root
if mode == 'meson'
# error()
endif
if mode == 'pyproject'
py = import('python').find_installation(pure: false)
namespace_path = meson.project_name().replace('.', '/')
install_root = py.get_install_dir(pure: true)
install_root_binary = py.get_install_dir(pure: false)
module_root = install_root / namespace_path
python_sources = run_command(
'find', namespace_path, '-iname', '*.py',
check: true
).stdout().strip().split('\n')
py.install_sources(
python_sources,
preserve_path: true,
pure: true,
# subdir: namespace_path,
)
# install_subdir(
# namespace_path,
# install_dir: py.get_install_dir(),
# install_tag: 'python-runtime',
# # python_sources,
# # subdir: namespace_path,
# )
install_data(
files(
[
namespace_path / 'py.typed',
],
# 'py.typed',
# '__init__.py',
# 'pyproject.toml',
),
install_dir : install_root,
install_tag: 'python-runtime',
preserve_path: true,
)
#
install_subdir(
project_root / '..' / 'meson',
install_dir : module_root,
strip_directory: false,
# install_tag: 'devel',
install_tag: 'devel',
)
endif

2
python/meson_options.txt Normal file

@ -0,0 +1,2 @@
option('modes', type: 'array', choices: ['meson', 'pyproject'], value: ['pyproject'])
option('install_path', type : 'string', value: '')

@ -3953,6 +3953,30 @@ class Command(enum.StrEnum):
vpn = 'vpn'
backup = 'backup'
pip_resolve = 'pip_resolve'
pip_check_conflicts = 'pip_check_conflicts'
def pip_check_conflicts(
args: list[str],
) -> None:
from .commands_typed.pip import pip_check_conflicts
from .commands_typed.argparse import parse_args as pr34_parse_args
parser = argparse.ArgumentParser()
parser.add_argument(
'-p',
dest='venv_path',
type=pathlib.Path,
help='venv path',
default=None,
)
options, argv = pr34_parse_args(parser, args)
res = pip_check_conflicts(options.venv_path)
logger.info(dict(res=res))
assert res.status == 'ok'
def pip_resolve(
@ -4091,6 +4115,8 @@ def commands_cli(argv: Optional[list[str]] = None) -> int:
desktop_services(args)
elif options.command is Command.pip_resolve:
pip_resolve(args)
elif options.command is Command.pip_check_conflicts:
pip_check_conflicts(args)
elif options.command is Command.pm_service:
pm_service(args)
elif options.command is Command.backup:

@ -5,9 +5,11 @@ import os
import pathlib
import logging
import sys
import pydantic
import subprocess
import shutil
import abc
import argparse
from .os import shutil_which
@ -15,6 +17,14 @@ from typing import (
Optional,
Literal,
Any,
MutableMapping,
Mapping,
IO,
)
from typing_extensions import (
cast,
Callable,
)
logger = logging.getLogger(__name__)
@ -28,6 +38,36 @@ class Project:
meson_path: Optional[pathlib.Path] = None
@dataclasses.dataclass
class PyProject:
@dataclasses.dataclass
class Tool:
@dataclasses.dataclass
class Meson:
@dataclasses.dataclass
class Args:
install: list[str]
args: Args
@dataclasses.dataclass
class MesonPython:
@dataclasses.dataclass
class Args:
install: list[str]
args: Args
meson: Optional[Meson] = None
meson_python: Optional[MesonPython] = pydantic.Field(
alias='meson-python',
default=None,
)
tool: Optional[Tool] = None
@dataclasses.dataclass
class Dependency:
name: str
@ -79,17 +119,23 @@ class CLI(abc.ABC):
'.',
]
subprocess.check_call(
[
self.dist_settings.python_path,
'-m',
'ruff',
'--config',
str(project.source_dir / 'pyproject.toml'),
*argv,
]
cmd = [
str(self.dist_settings.python_path),
'-m',
'ruff',
'--config',
str(project.source_dir / 'pyproject.toml'),
*argv,
]
logger.info(
dict(
cmd=cmd,
)
)
subprocess.check_call(cmd)
def pyright(
self,
project_name: str,
@ -124,7 +170,7 @@ class CLI(abc.ABC):
pyproject = cli_bootstrap.pyproject_load(self.projects[project].source_dir / 'pyproject.toml')
dependencies = sum([pyproject.dependencies[o] for o in features], [])
dependencies = sum([pyproject.dependencies[o] for o in features], cast(list[str], []))
pip_find_links: list[pathlib.Path] = []
@ -153,7 +199,7 @@ class CLI(abc.ABC):
]
for o in pip_find_links
],
[],
cast(list[str], []),
),
# '-f', str(pathlib.Path(__file__).parent / 'deps' / 'dist'),
'--offline',
@ -251,6 +297,8 @@ class CLI(abc.ABC):
force: Optional[bool] = None,
env: Optional[dict[str, str]] = None,
mypy: bool = False,
ruff: bool = False,
pyright: bool = False,
tests: bool = False,
) -> None:
project = self.projects[project_name]
@ -278,9 +326,29 @@ class CLI(abc.ABC):
force=force,
)
if ruff:
self.ruff(
project_name=project_name,
argv=[
'format',
'--check',
],
)
self.ruff(
project_name=project_name,
argv=[],
)
if mypy:
self.mypy([])
if pyright:
self.pyright(
project_name=project_name,
argv=[],
)
if env is None:
env = dict()
@ -331,6 +399,8 @@ class CLI(abc.ABC):
force: Optional[bool] = None,
argv: Optional[list[str]] = None,
) -> None:
from . import cli_bootstrap
project = self.projects[project_name]
if force is None:
@ -342,21 +412,34 @@ class CLI(abc.ABC):
if force and project.dest_dir.exists():
shutil.rmtree(project.dest_dir)
subprocess.check_call(
[
shutil_which(
'meson',
True,
),
'install',
'-C',
project.build_dir / 'meson',
'--destdir',
project.dest_dir,
*argv,
]
pyproject = cli_bootstrap.pyproject_load(project.source_dir / 'pyproject.toml')
pyproject_tool = pydantic.RootModel[PyProject.Tool].model_validate(pyproject.tool).root
if pyproject_tool.meson and pyproject_tool.meson.args and pyproject_tool.meson.args.install:
argv = pyproject_tool.meson.args.install + argv
cmd = [
shutil_which(
'meson',
True,
),
'install',
'-C',
str(project.build_dir / 'meson'),
'--destdir',
str(project.dest_dir),
*argv,
]
logger.info(
dict(
cmd=cmd,
)
)
subprocess.check_call(cmd)
for o in glob.glob(
str(project.dest_dir / 'lib' / 'pkgconfig' / '*.pc'),
recursive=True,
@ -499,3 +582,195 @@ class CLI(abc.ABC):
cmd,
env=dict(list(os.environ.items())) | env,
)
def venv_compile(
self,
project_name: str,
# force: bool,
argv: Optional[list[str]] = None,
) -> None:
from . import cli_bootstrap
from . import argparse as pr34_argparse
project = self.projects[project_name]
bootstrap_settings = cli_bootstrap.BootstrapSettings.get()
parser = argparse.ArgumentParser()
parser.add_argument(
'-f',
dest='features',
action='append',
default=[],
# type=pathlib.Path,
type=str,
)
parser.add_argument(
'-p',
dest='python_version',
default=bootstrap_settings.python_version,
# type=pathlib.Path,
type=str,
)
options, args = pr34_argparse.parse_args(
parser,
argv,
)
pyproject = cli_bootstrap.pyproject_load(project.source_dir / 'pyproject.toml')
dependencies = sum([pyproject.dependencies[o] for o in options.features], cast(list[str], []))
pip_find_links: list[pathlib.Path] = []
if not pyproject.pip_find_links is None:
pip_find_links.extend([o for o in pyproject.pip_find_links if o.exists()])
requirements_name_get_res = cli_bootstrap.requirements_name_get(
source_dir=project.source_dir,
features=options.features,
python_version=options.python_version,
requirements=pyproject.requirements,
)
logger.info(
dict(
dependencies=dependencies,
requirements_name_get_res=requirements_name_get_res,
)
)
with io.open(
requirements_name_get_res.not_compiled,
'w',
) as f:
f.write(
'\n'.join(dependencies),
)
f.flush()
if len(dependencies) > 0:
cmd = [
str(self.dist_settings.python_path),
'-m',
'uv',
'pip',
'compile',
*args,
'--python-version',
options.python_version,
*sum(
[
[
'-f',
str(o),
]
for o in pip_find_links
],
cast(list[str], []),
),
'--generate-hashes',
str(requirements_name_get_res.not_compiled),
'-o',
str(requirements_name_get_res.compiled),
]
logger.info(
dict(
cmd=cmd,
)
)
subprocess.check_call(cmd)
def module_switch(
self,
project_name: str,
# force: bool,
argv: Optional[list[str]] = None,
) -> None:
import tomlkit
import tomlkit.container
import tomlkit.items
from . import cli_bootstrap
from . import argparse as pr34_argparse
project = self.projects[project_name]
parser = argparse.ArgumentParser()
parser.add_argument(
'-m',
dest='module',
# choices=[
# o.name
# for o in project.modules
# ],
required=True,
# type=pathlib.Path,
type=str,
)
parser.add_argument(
'-f',
dest='file',
default=pathlib.Path('pyproject.common.toml'),
# type=pathlib.Path,
type=pathlib.Path,
)
options, args = pr34_argparse.parse_args(
parser,
argv,
)
if not options.file.is_absolute():
options.file = project.source_dir / options.file
pyproject = cli_bootstrap.pyproject_load(
options.file,
)
assert options.module in [o.name for o in pyproject.modules]
modules: dict[str, cli_bootstrap.PyProject.Module] = {o.name: o for o in pyproject.modules}
module = modules[options.module]
with io.open(options.file, 'rb') as f:
pyproject2 = tomlkit.load(f)
with io.open(
project.source_dir / 'pyproject.toml',
'w',
) as f:
p = pyproject2['project']
assert isinstance(p, tomlkit.items.Table)
p['name'] = module.name
if not pyproject2['tool']:
pyproject2['tool'] = []
if not 'tool' in pyproject2:
pyproject2['tool'] = dict()
pyproject_tool = pyproject2['tool']
# assert isinstance(pyproject_tool, tomlkit.items.Array)
assert isinstance(pyproject_tool, MutableMapping)
for k, v in module.tool.items():
assert not k in pyproject_tool
pyproject_tool[k] = v
del p
del pyproject_tool
cast(
Callable[[Mapping[Any, Any], IO[str] | IO[bytes]], None],
getattr(tomlkit, 'dump'),
)(pyproject2, f)
del pyproject2
del module
# raise NotImplementedError

@ -1,5 +1,6 @@
#!/usr/bin/env python3
import glob
import json
import io
import tempfile
import dataclasses
@ -13,10 +14,14 @@ import logging
from typing import (
Optional,
Any,
cast,
Type,
TypeVar,
)
from typing_extensions import (
Self,
BinaryIO,
overload,
)
logger = logging.getLogger(__name__)
@ -42,6 +47,12 @@ def toml_load(f: BinaryIO) -> Any:
@dataclasses.dataclass
class PyProject:
@dataclasses.dataclass
class Module:
name: str
meson: Optional[pathlib.Path] = None
tool: dict[str, Any] = dataclasses.field(default_factory=lambda: dict())
path: pathlib.Path
dependencies: dict[str, list[str]]
early_features: Optional[list[str]] = None
@ -50,6 +61,89 @@ class PyProject:
runtime_preload: Optional[list[pathlib.Path]] = None
requirements: dict[str, pathlib.Path] = dataclasses.field(default_factory=lambda: dict())
modules: list[Module] = dataclasses.field(
default_factory=lambda: [],
)
tool: dict[str, Any] = dataclasses.field(
default_factory=lambda: dict(),
)
Key = TypeVar('Key')
Value = TypeVar('Value')
@overload
def check_dict(
value: Any,
KT: Type[Key],
VT: Type[Value],
) -> dict[Key, Value]: ...
@overload
def check_dict(
value: Any,
KT: Type[Key],
) -> dict[Key, Any]: ...
def check_dict(
value: Any,
KT: Type[Key],
VT: Optional[Type[Value]] = None,
) -> dict[Key, Value]:
assert isinstance(value, dict)
value2 = cast(dict[Any, Any], value)
assert all([isinstance(k, KT) and (VT is None or isinstance(v, VT)) for k, v in value2.items()])
if VT is None:
return cast(
dict[Key, Any],
value,
)
else:
return cast(
dict[Key, Value],
value,
)
@overload
def check_list(
value: Any,
VT: Type[Value],
) -> list[Value]: ...
@overload
def check_list(
value: Any,
) -> list[Any]: ...
def check_list(
value: Any,
VT: Optional[Type[Value]] = None,
) -> list[Value] | list[Any]:
assert isinstance(value, list)
value2 = cast(list[Any], value)
assert all([(VT is None or isinstance(o, VT)) for o in value2])
if VT is None:
return cast(
list[Any],
value,
)
else:
return cast(
list[Value],
value,
)
def pyproject_load(
d: pathlib.Path,
@ -66,9 +160,21 @@ def pyproject_load(
if 'optional-dependencies' in content['project']:
assert isinstance(content['project']['optional-dependencies'], dict)
for k, v in content['project']['optional-dependencies'].items():
assert isinstance(v, list)
assert isinstance(k, str)
for k, v in check_dict(
check_dict(
check_dict(
content,
str,
# Any,
)['project'],
str,
# Any,
)['optional-dependencies'],
str,
list[Any],
).items():
# assert isinstance(v, list)
# assert isinstance(k, str)
dependencies[k] = v
@ -79,36 +185,75 @@ def pyproject_load(
tool_name = 'online.fxreader.pr34'.replace('.', '-')
if 'tool' in content:
res.tool = check_dict(
content['tool'],
str,
)
if 'tool' in content and isinstance(content['tool'], dict) and tool_name in content['tool'] and isinstance(content['tool'][tool_name], dict):
if 'early_features' in content['tool'][tool_name]:
res.early_features = content['tool'][tool_name]['early_features']
pr34_tool = check_dict(
check_dict(
content['tool'],
str,
)[tool_name],
str,
)
if 'pip_find_links' in content['tool'][tool_name]:
res.pip_find_links = [d.parent / pathlib.Path(o) for o in content['tool'][tool_name]['pip_find_links']]
if 'early_features' in pr34_tool:
res.early_features = pr34_tool['early_features']
if 'runtime_libdirs' in content['tool'][tool_name]:
if 'pip_find_links' in pr34_tool:
res.pip_find_links = [d.parent / pathlib.Path(o) for o in pr34_tool['pip_find_links']]
if 'runtime_libdirs' in pr34_tool:
res.runtime_libdirs = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_libdirs']
for o in pr34_tool['runtime_libdirs']
]
if 'runtime_preload' in content['tool'][tool_name]:
if 'runtime_preload' in pr34_tool:
res.runtime_preload = [
d.parent / pathlib.Path(o)
# pathlib.Path(o)
for o in content['tool'][tool_name]['runtime_preload']
for o in pr34_tool['runtime_preload']
]
if 'requirements' in content['tool'][tool_name]:
assert isinstance(content['tool'][tool_name]['requirements'], dict)
if 'requirements' in pr34_tool:
res.requirements = {
k: d.parent / pathlib.Path(v)
# pathlib.Path(o)
for k, v in content['tool'][tool_name]['requirements'].items()
for k, v in check_dict(pr34_tool['requirements'], str, str).items()
}
if 'modules' in pr34_tool:
modules = check_list(pr34_tool['modules'])
# res.modules = []
for o in modules:
assert isinstance(o, dict)
assert 'name' in o and isinstance(o['name'], str)
module = PyProject.Module(
name=o['name'],
)
if 'meson' in o:
assert 'meson' in o and isinstance(o['meson'], str)
module.meson = pathlib.Path(o['meson'])
if 'tool' in o:
module.tool.update(
check_dict(
o['tool'],
str,
)
)
res.modules.append(module)
return res
@ -127,6 +272,9 @@ class BootstrapSettings:
),
).strip()
)
pip_check_conflicts: Optional[bool] = dataclasses.field(
default_factory=lambda: os.environ.get('PIP_CHECK_CONFLICTS', json.dumps(True)) in [json.dumps(True)],
)
uv_args: list[str] = dataclasses.field(
default_factory=lambda: os.environ.get(
'UV_ARGS',
@ -142,7 +290,12 @@ class BootstrapSettings:
if base_dir is None:
base_dir = pathlib.Path.cwd()
env_path = base_dir / '.venv'
env_path: Optional[pathlib.Path] = None
if 'ENV_PATH' in os.environ:
env_path = pathlib.Path(os.environ['ENV_PATH'])
else:
env_path = base_dir / '.venv'
python_path = env_path / 'bin' / 'python3'
return cls(
@ -152,6 +305,47 @@ class BootstrapSettings:
)
class requirements_name_get_t:
@dataclasses.dataclass
class res_t:
not_compiled: pathlib.Path
compiled: pathlib.Path
name: str
def requirements_name_get(
source_dir: pathlib.Path,
python_version: Optional[str],
features: list[str],
requirements: dict[str, pathlib.Path],
) -> requirements_name_get_t.res_t:
requirements_python_version: Optional[str] = None
if not python_version is None:
requirements_python_version = python_version.replace('.', '_')
requirements_name = '_'.join(sorted(features))
if requirements_python_version:
requirements_name += '_' + requirements_python_version
requirements_path: Optional[pathlib.Path] = None
if requirements_name in requirements:
requirements_path = requirements[requirements_name]
else:
requirements_path = source_dir / 'requirements.txt'
requirements_path_in = requirements_path.parent / (requirements_path.stem + '.in')
requirements_in: list[str] = []
return requirements_name_get_t.res_t(
not_compiled=requirements_path_in,
compiled=requirements_path,
name=requirements_name,
)
def env_bootstrap(
bootstrap_settings: BootstrapSettings,
pyproject: PyProject,
@ -169,7 +363,7 @@ def env_bootstrap(
]
for o in pip_find_links
],
[],
cast(list[str], []),
)
features: list[str] = []
@ -177,32 +371,24 @@ def env_bootstrap(
if pyproject.early_features:
features.extend(pyproject.early_features)
requirements_python_version: Optional[str] = None
if not bootstrap_settings.python_version is None:
requirements_python_version = bootstrap_settings.python_version.replace('.', '_')
requirements_name = '_'.join(sorted(features))
if requirements_python_version:
requirements_name += '_' + requirements_python_version
requirements_path: Optional[pathlib.Path] = None
if requirements_name in pyproject.requirements:
requirements_path = pyproject.requirements[requirements_name]
else:
requirements_path = pyproject.path.parent / 'requirements.txt'
requirements_name_get_res = requirements_name_get(
python_version=bootstrap_settings.python_version,
features=features,
requirements=pyproject.requirements,
source_dir=pyproject.path.parent,
)
requirements_path = requirements_name_get_res.compiled
requirements_in: list[str] = []
requirements_in.extend(['uv', 'pip', 'build', 'setuptools', 'meson-python', 'pybind11'])
if pyproject.early_features:
early_dependencies = sum([pyproject.dependencies[o] for o in pyproject.early_features], [])
early_dependencies = sum([pyproject.dependencies[o] for o in pyproject.early_features], cast(list[str], []))
logger.info(
dict(
requirements_name=requirements_name,
requirements_name_get_res=requirements_name_get_res,
early_dependencies=early_dependencies,
)
)
@ -281,6 +467,16 @@ def env_bootstrap(
]
)
if bootstrap_settings.pip_check_conflicts:
subprocess.check_call(
[
bootstrap_settings.python_path,
'-m',
'online.fxreader.pr34.commands',
'pip_check_conflicts',
]
)
def paths_equal(a: pathlib.Path | str, b: pathlib.Path | str) -> bool:
return os.path.abspath(str(a)) == os.path.abspath(str(b))

@ -2,6 +2,7 @@ import base64
import os
import cryptography.hazmat.primitives.kdf.scrypt
import cryptography.exceptions
from typing import (
Literal,

@ -84,7 +84,7 @@ def run(
argv = []
if settings is None:
settings = MypySettings()
settings = MypySettings.model_validate(dict())
parser = argparse.ArgumentParser()
parser.add_argument(

@ -1,4 +1,5 @@
import contextlib
import glob
import pathlib
import sys
import enum
@ -10,6 +11,11 @@ import unittest.mock
import logging
import typing
from typing_extensions import (
cast,
Protocol,
)
if typing.TYPE_CHECKING:
import pip._internal.commands.show
import pip._internal.commands.download
@ -21,6 +27,8 @@ if typing.TYPE_CHECKING:
import pip._internal.resolution.base
import pip._internal.resolution.resolvelib.resolver
import pip._internal.operations.prepare
import pip._internal.index.package_finder
from pip._internal.req.req_install import InstallRequirement
from typing import (
Literal,
@ -32,19 +40,48 @@ from typing import (
logger = logging.getLogger(__name__)
class pip_show_t:
class res_t:
class package_info_t:
pass
def pip_show(
argv: list[str],
) -> list['pip._internal.commands.show._PackageInfo']:
) -> list[
# 'pip._internal.commands.show._PackageInfo'
pip_show_t.res_t.package_info_t,
]:
import pip._internal.commands.show
return list(
pip._internal.commands.show.search_packages_info(
argv,
)
return cast(
list[pip_show_t.res_t.package_info_t],
list(
pip._internal.commands.show.search_packages_info(
argv,
)
),
)
class pip_resolve_t:
class build_package_finder_t(Protocol):
def __call__(
self,
options: Any,
session: Any,
target_python: Any,
ignore_requires_python: Any,
) -> 'pip._internal.index.package_finder.PackageFinder': ...
class complete_partial_requirements_t(Protocol):
def __call__(
self,
_self: 'pip._internal.resolution.resolvelib.resolver.Resolver',
partially_downloaded_reqs: Iterable['InstallRequirement',],
parallel_builds: bool = False,
) -> None: ...
class kwargs_t:
class mode_t(enum.StrEnum):
copy_paste = 'copy_paste'
@ -130,12 +167,13 @@ def pip_resolve(
# t1._in_main_context = True
session = t1.get_default_session(options)
target_python = pip._internal.cli.cmdoptions.make_target_python(options)
finder = t1._build_package_finder(
finder = cast(pip_resolve_t.build_package_finder_t, getattr(t1, '_build_package_finder'))(
options=options,
session=session,
target_python=target_python,
ignore_requires_python=options.ignore_requires_python,
)
build_tracker = t1.enter_context(pip._internal.operations.build.build_tracker.get_build_tracker())
reqs = t1.get_requirements(
[
@ -220,6 +258,8 @@ def pip_resolve(
from pip._internal.utils.hashes import Hashes
from pip._internal.req.req_install import InstallRequirement
from . import cli_bootstrap
downloader_call_def = pip._internal.network.download.Downloader.__call__
def downloader_call(
@ -311,7 +351,13 @@ def pip_resolve(
result_requirements.extend(reqs)
raise NotImplementedError
_complete_partial_requirements_def = pip._internal.operations.prepare.RequirementPreparer._complete_partial_requirements
_complete_partial_requirements_def = cast(
pip_resolve_t.complete_partial_requirements_t,
getattr(
pip._internal.operations.prepare.RequirementPreparer,
'_complete_partial_requirements',
),
)
def _complete_partial_requirements(
_self: pip._internal.resolution.resolvelib.resolver.Resolver,
@ -391,7 +437,7 @@ def pip_resolve(
# ]
# for o in result_requirements
# ], [])
logger.warn(result_requirements)
logger.warning(result_requirements)
res = pip_resolve_t.res_t()
@ -400,7 +446,15 @@ def pip_resolve(
for o in result_requirements:
assert isinstance(o, InstallRequirement)
sha256_hashes = o.hashes()._allowed['sha256']
sha256_hashes = cli_bootstrap.check_list(
cli_bootstrap.check_dict(
getattr(o.hashes(), '_allowed'),
str,
list[str],
)['sha256'],
str,
)
assert len(sha256_hashes) == 1
assert not o.link is None
@ -478,3 +532,46 @@ def pip_resolve(
)
else:
raise NotImplementedError
class pip_check_conflicts_t:
@dataclasses.dataclass
class res_t:
status: Literal['ok', 'error']
duplicates: list[str]
def pip_check_conflicts(
venv_path: Optional[pathlib.Path] = None,
) -> pip_check_conflicts_t.res_t:
assert sys.platform == 'linux'
if venv_path is None:
venv_path = (
pathlib.Path(
sys.executable,
).parent
/ '..'
)
# records = glob.glob(
# str(venv_path / '*' / 'site-packages' / '*.dist-info' / 'RECORD'),
# recursive=True,
# )
duplicates = [
line
for line in subprocess.check_output(
r"""
cat $(find $VENV_PATH/lib/*/*/*.dist-info/RECORD) | sort | uniq -c | (grep -v -P '^\s+1\s'; true;)
""",
shell=True,
env=dict(
VENV_PATH=str(venv_path),
),
)
.decode('utf-8')
.splitlines()
if line.strip() != ''
]
return pip_check_conflicts_t.res_t(status=('error' if len(duplicates) > 0 else 'ok'), duplicates=duplicates)

@ -5,12 +5,9 @@ import cv2
import re
import json
import io
import glob
import xarray
import numpy
import json
import glob
import io
import os
import pandas
import pickle
@ -325,7 +322,7 @@ def kernel_7(
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.models
from torch.autograd import Variable
@ -1735,7 +1732,13 @@ def kernel_28(
--outdir %s
""" % (t13, t2)
if False:
pprint.pprint([t4, t2, t6])
pprint.pprint(
[
# t4,
t2,
t6,
]
)
with subprocess.Popen(t6, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as p:
if False:
pprint.pprint(p.communicate())
@ -1781,7 +1784,7 @@ def kernel_29(
t1 = json.load(f)
t8 = sum([o['data'] for o in t1], [])
t10 = re.compile('frame-(\d+)\.jpg')
t10 = re.compile(r'frame-(\d+)\.jpg')
for i, o in enumerate(t8):
o['frame_id'] = int(t10.match(o['image_id'])[1])
@ -2018,7 +2021,7 @@ def kernel_30(
def kernel_31(image_id, image_size, keypoints):
def get_angle(a, b):
from math import sqrt, acos, degrees, atan, degrees
from math import sqrt, acos, degrees, atan
# print(a)
# print(b)
@ -2038,7 +2041,7 @@ def kernel_31(image_id, image_size, keypoints):
def angle_gor(a, b, c, d):
import numpy as np
from math import sqrt, acos, degrees, atan, degrees
from math import sqrt, acos, degrees, atan
ab = [a[0] - b[0], a[1] - b[1]]
ab1 = [c[0] - d[0], c[1] - d[1]]
@ -2049,14 +2052,14 @@ def kernel_31(image_id, image_size, keypoints):
def sit_ang(a, b, c, d):
ang = angle_gor(a, b, c, d)
s1 = 0
if ang != None:
if not ang is None:
# print("Angle",ang)
if ang < 120 and ang > 40:
s1 = 1
return s1
def sit_rec(a, b, c, d):
from math import sqrt, acos, degrees, atan, degrees
from math import sqrt, acos, degrees, atan
ab = [a[0] - b[0], a[1] - b[1]]
ab1 = [c[0] - d[0], c[1] - d[1]]
@ -2267,7 +2270,7 @@ def kernel_36():
"""
import os
# import os
from os.path import exists, join, basename, splitext
git_repo_url = 'https://github.com/CMU-Perceptual-Computing-Lab/openpose.git'
@ -2296,8 +2299,8 @@ def kernel_36():
"""## From a Google Drive's folder"""
import os
from os.path import exists, join, basename, splitext
# import os
# from os.path import exists, join, basename, splitext
folder_path = '/content/drive/My Drive/openpose/'
files = os.listdir(folder_path)
@ -2345,9 +2348,8 @@ def kernel_36():
# video_folder = os.path.dirname(colab_video_path)
# video_base_name = os.path.basename(colab_video_path)
# print(video_base_name)
import os
from os.path import exists, join, basename, splitext
# import os
# from os.path import exists, join, basename, splitext
# colab_video_path = '/content/drive/My Drive/bachata.mp4'
colab_video_path = '/content/output.mp4'
colab_openpose_video_path = colab_video_path.replace('.mp4', '') + '-openpose.mp4'

@ -1,6 +1,18 @@
[project]
description = 'set of tools for software development'
requires-python = '>= 3.10'
maintainers = [
{ name = 'Siarhei Siniak', email = 'siarheisiniak@gmail.com' },
]
classifiers = [
'Programming Language :: Python',
]
name = 'online.fxreader.pr34'
version = '0.1.5.16'
# version = '0.1.5.16+27.7'
dynamic = [
'version',
]
dependencies = [
#"-r requirements.txt",
@ -8,6 +20,7 @@ dependencies = [
'marisa-trie',
'pydantic',
'pydantic-settings',
'tomlkit',
]
[project.optional-dependencies]
@ -18,40 +31,201 @@ crypto = [
early = [
'numpy',
'cryptography',
# 'tomlkit',
]
lint = [
'tomli',
'mypy',
'pyright',
'ruff',
# 'tomlkit',
]
[tool.online-fxreader-pr34]
early_features = ['default', 'early', 'lint',]
[build-system]
requires = ['setuptools']
build-backend = 'setuptools.build_meta'
[tool.setuptools]
include-package-data = false
[tool.setuptools.package-dir]
'online.fxreader.pr34' = 'online/fxreader/pr34'
#package_dir = '..'
#packages = ['online_fxreader']
#[tool.setuptools.packages.find]
#where = ['../..']
#include = ['../../online_fxreader/vpn']
#exclude =['../../aiortc/*', '../../_cffi_src/*']
#[tool.setuptools.packages.find]
#exclude = ['*']
#include = ['*.py']
# [tool.setuptools.exclude-package-data]
# 'online.fxreader.pr34' = ['online/fxreader/pr34/py.typed']
#[tool.setuptools.package-data]
#'online_fxreader.vpn' = ['requirements.txt']
requires = ["meson-python", "pybind11"]
build-backend = "mesonpy"
[project.scripts]
online-fxreader-pr34-commands = 'online.fxreader.pr34.commands:commands_cli'
[tool.ruff]
line-length = 160
target-version = 'py310'
# builtins = ['_', 'I', 'P']
include = [
# 'follow_the_leader/**/*.py',
#'*.py',
# '*.recipe',
'*.py',
'online/**/*.py',
'online/**/*.pyi',
]
exclude = [
'.venv',
]
[tool.ruff.format]
quote-style = 'single'
indent-style = 'tab'
skip-magic-trailing-comma = false
[tool.ruff.lint]
ignore = [
'E402', 'E722', 'E741', 'W191', 'E101', 'E501', 'I001', 'F401', 'E714',
'E713',
# remove lambdas later on
'E731',
# fix this too
'E712',
'E703',
# remove unused variables, or fix a bug
'F841',
# fix * imports
'F403',
# don't care about trailing new lines
'W292',
]
select = ['E', 'F', 'I', 'W', 'INT']
[tool.ruff.lint.isort]
detect-same-package = true
# extra-standard-library = ["aes", "elementmaker", "encodings"]
# known-first-party = ["calibre_extensions", "calibre_plugins", "polyglot"]
# known-third-party = ["odf", "qt", "templite", "tinycss", "css_selectors"]
relative-imports-order = "closest-to-furthest"
split-on-trailing-comma = true
section-order = [
# '__python__',
"future",
"standard-library", "third-party", "first-party", "local-folder"
]
force-wrap-aliases = true
# [tool.ruff.lint.isort.sections]
# '__python__' = ['__python__']
[tool.pylsp-mypy]
enabled = false
[tool.pyright]
include = [
#'../../../../../follow_the_leader/views2/payments.py',
#'../../../../../follow_the_leader/logic/payments.py',
#'../../../../../follow_the_leader/logic/paypal.py',
'online/fxreader/pr34/commands_typed/**/*.py',
]
# stubPath = '../mypy-stubs'
extraPaths = [
'.',
'../mypy-stubs',
'../mypy-stubs/types-debugpy',
'../mypy-stubs/marisa-trie-types',
# '../../../../../',
]
#strict = ["src"]
analyzeUnannotatedFunctions = true
disableBytesTypePromotions = true
strictParameterNoneValue = true
enableTypeIgnoreComments = true
enableReachabilityAnalysis = true
strictListInference = true
strictDictionaryInference = true
strictSetInference = true
deprecateTypingAliases = false
enableExperimentalFeatures = false
reportMissingTypeStubs ="error"
reportMissingModuleSource = "warning"
reportInvalidTypeForm = "error"
reportMissingImports = "error"
reportUndefinedVariable = "error"
reportAssertAlwaysTrue = "error"
reportInvalidStringEscapeSequence = "error"
reportInvalidTypeVarUse = "error"
reportSelfClsParameterName = "error"
reportUnsupportedDunderAll = "error"
reportUnusedExpression = "error"
reportWildcardImportFromLibrary = "error"
reportAbstractUsage = "error"
reportArgumentType = "error"
reportAssertTypeFailure = "error"
reportAssignmentType = "error"
reportAttributeAccessIssue = "error"
reportCallIssue = "error"
reportGeneralTypeIssues = "error"
reportInconsistentOverload = "error"
reportIndexIssue = "error"
reportInvalidTypeArguments = "error"
reportNoOverloadImplementation = "error"
reportOperatorIssue = "error"
reportOptionalSubscript = "error"
reportOptionalMemberAccess = "error"
reportOptionalCall = "error"
reportOptionalIterable = "error"
reportOptionalContextManager = "error"
reportOptionalOperand = "error"
reportRedeclaration = "error"
reportReturnType = "error"
reportTypedDictNotRequiredAccess = "error"
reportPrivateImportUsage = "error"
reportUnboundVariable = "error"
reportUnhashable = "error"
reportUnusedCoroutine = "error"
reportUnusedExcept = "error"
reportFunctionMemberAccess = "error"
reportIncompatibleMethodOverride = "error"
reportIncompatibleVariableOverride = "error"
reportOverlappingOverload = "error"
reportPossiblyUnboundVariable = "error"
reportConstantRedefinition = "error"
#reportDeprecated = "error"
reportDeprecated = "warning"
reportDuplicateImport = "error"
reportIncompleteStub = "error"
reportInconsistentConstructor = "error"
reportInvalidStubStatement = "error"
reportMatchNotExhaustive = "error"
reportMissingParameterType = "error"
reportMissingTypeArgument = "error"
reportPrivateUsage = "error"
reportTypeCommentUsage = "error"
reportUnknownArgumentType = "error"
reportUnknownLambdaType = "error"
reportUnknownMemberType = "error"
reportUnknownParameterType = "error"
reportUnknownVariableType = "error"
#reportUnknownVariableType = "warning"
reportUnnecessaryCast = "error"
reportUnnecessaryComparison = "error"
reportUnnecessaryContains = "error"
#reportUnnecessaryIsInstance = "error"
reportUnnecessaryIsInstance = "warning"
reportUnusedClass = "error"
#reportUnusedImport = "error"
reportUnusedImport = "none"
# reportUnusedFunction = "error"
reportUnusedFunction = "warning"
#reportUnusedVariable = "error"
reportUnusedVariable = "warning"
reportUntypedBaseClass = "error"
reportUntypedClassDecorator = "error"
reportUntypedFunctionDecorator = "error"
reportUntypedNamedTuple = "error"
reportCallInDefaultInitializer = "none"
reportImplicitOverride = "none"
reportImplicitStringConcatenation = "none"
reportImportCycles = "none"
reportMissingSuperCall = "none"
reportPropertyTypeMismatch = "none"
reportShadowedImports = "none"
reportUninitializedInstanceVariable = "none"
reportUnnecessaryTypeIgnoreComment = "none"
reportUnusedCallResult = "none"

@ -1,5 +1,5 @@
# This file was autogenerated by uv via the following command:
# uv pip compile --generate-hashes -o /home/nartes/Documents/current/freelance-project-34-marketing-blog/python/requirements.txt /tmp/requirementsmeh8aapn.in
# uv pip compile --generate-hashes --offline -o /home/nartes/Documents/current/freelance-project-34-marketing-blog/python/requirements.txt /tmp/requirementsguod07w5.in
annotated-types==0.7.0 \
--hash=sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53 \
--hash=sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89
@ -7,7 +7,7 @@ annotated-types==0.7.0 \
build==1.2.2.post1 \
--hash=sha256:1d61c0887fa860c01971625baae8bdd338e517b836a2f70dd1f7aa3a6b2fc5b5 \
--hash=sha256:b36993e92ca9375a219c99e606a122ff365a760a2d4bba0caa09bd5278b608b7
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
cffi==1.17.1 \
--hash=sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8 \
--hash=sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2 \
@ -77,43 +77,45 @@ cffi==1.17.1 \
--hash=sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87 \
--hash=sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b
# via cryptography
cryptography==44.0.2 \
--hash=sha256:04abd71114848aa25edb28e225ab5f268096f44cf0127f3d36975bdf1bdf3390 \
--hash=sha256:0529b1d5a0105dd3731fa65680b45ce49da4d8115ea76e9da77a875396727b41 \
--hash=sha256:1bc312dfb7a6e5d66082c87c34c8a62176e684b6fe3d90fcfe1568de675e6688 \
--hash=sha256:268e4e9b177c76d569e8a145a6939eca9a5fec658c932348598818acf31ae9a5 \
--hash=sha256:29ecec49f3ba3f3849362854b7253a9f59799e3763b0c9d0826259a88efa02f1 \
--hash=sha256:2bf7bf75f7df9715f810d1b038870309342bff3069c5bd8c6b96128cb158668d \
--hash=sha256:3b721b8b4d948b218c88cb8c45a01793483821e709afe5f622861fc6182b20a7 \
--hash=sha256:3c00b6b757b32ce0f62c574b78b939afab9eecaf597c4d624caca4f9e71e7843 \
--hash=sha256:3dc62975e31617badc19a906481deacdeb80b4bb454394b4098e3f2525a488c5 \
--hash=sha256:4973da6ca3db4405c54cd0b26d328be54c7747e89e284fcff166132eb7bccc9c \
--hash=sha256:4e389622b6927d8133f314949a9812972711a111d577a5d1f4bee5e58736b80a \
--hash=sha256:51e4de3af4ec3899d6d178a8c005226491c27c4ba84101bfb59c901e10ca9f79 \
--hash=sha256:5f6f90b72d8ccadb9c6e311c775c8305381db88374c65fa1a68250aa8a9cb3a6 \
--hash=sha256:6210c05941994290f3f7f175a4a57dbbb2afd9273657614c506d5976db061181 \
--hash=sha256:6f101b1f780f7fc613d040ca4bdf835c6ef3b00e9bd7125a4255ec574c7916e4 \
--hash=sha256:7bdcd82189759aba3816d1f729ce42ffded1ac304c151d0a8e89b9996ab863d5 \
--hash=sha256:7ca25849404be2f8e4b3c59483d9d3c51298a22c1c61a0e84415104dacaf5562 \
--hash=sha256:81276f0ea79a208d961c433a947029e1a15948966658cf6710bbabb60fcc2639 \
--hash=sha256:8cadc6e3b5a1f144a039ea08a0bdb03a2a92e19c46be3285123d32029f40a922 \
--hash=sha256:8e0ddd63e6bf1161800592c71ac794d3fb8001f2caebe0966e77c5234fa9efc3 \
--hash=sha256:909c97ab43a9c0c0b0ada7a1281430e4e5ec0458e6d9244c0e821bbf152f061d \
--hash=sha256:96e7a5e9d6e71f9f4fca8eebfd603f8e86c5225bb18eb621b2c1e50b290a9471 \
--hash=sha256:9a1e657c0f4ea2a23304ee3f964db058c9e9e635cc7019c4aa21c330755ef6fd \
--hash=sha256:9eb9d22b0a5d8fd9925a7764a054dca914000607dff201a24c791ff5c799e1fa \
--hash=sha256:af4ff3e388f2fa7bff9f7f2b31b87d5651c45731d3e8cfa0944be43dff5cfbdb \
--hash=sha256:b042d2a275c8cee83a4b7ae30c45a15e6a4baa65a179a0ec2d78ebb90e4f6699 \
--hash=sha256:bc821e161ae88bfe8088d11bb39caf2916562e0a2dc7b6d56714a48b784ef0bb \
--hash=sha256:c505d61b6176aaf982c5717ce04e87da5abc9a36a5b39ac03905c4aafe8de7aa \
--hash=sha256:c63454aa261a0cf0c5b4718349629793e9e634993538db841165b3df74f37ec0 \
--hash=sha256:c7362add18b416b69d58c910caa217f980c5ef39b23a38a0880dfd87bdf8cd23 \
--hash=sha256:d03806036b4f89e3b13b6218fefea8d5312e450935b1a2d55f0524e2ed7c59d9 \
--hash=sha256:d1b3031093a366ac767b3feb8bcddb596671b3aaff82d4050f984da0c248b615 \
--hash=sha256:d1c3572526997b36f245a96a2b1713bf79ce99b271bbcf084beb6b9b075f29ea \
--hash=sha256:efcfe97d1b3c79e486554efddeb8f6f53a4cdd4cf6086642784fa31fc384e1d7 \
--hash=sha256:f514ef4cd14bb6fb484b4a60203e912cfcb64f2ab139e88c2274511514bf7308
# via -r /tmp/requirementsmeh8aapn.in
cryptography==44.0.3 \
--hash=sha256:02f55fb4f8b79c1221b0961488eaae21015b69b210e18c386b69de182ebb1259 \
--hash=sha256:157f1f3b8d941c2bd8f3ffee0af9b049c9665c39d3da9db2dc338feca5e98a43 \
--hash=sha256:192ed30fac1728f7587c6f4613c29c584abdc565d7417c13904708db10206645 \
--hash=sha256:21a83f6f35b9cc656d71b5de8d519f566df01e660ac2578805ab245ffd8523f8 \
--hash=sha256:25cd194c39fa5a0aa4169125ee27d1172097857b27109a45fadc59653ec06f44 \
--hash=sha256:3883076d5c4cc56dbef0b898a74eb6992fdac29a7b9013870b34efe4ddb39a0d \
--hash=sha256:3bb0847e6363c037df8f6ede57d88eaf3410ca2267fb12275370a76f85786a6f \
--hash=sha256:3be3f649d91cb182c3a6bd336de8b61a0a71965bd13d1a04a0e15b39c3d5809d \
--hash=sha256:3f07943aa4d7dad689e3bb1638ddc4944cc5e0921e3c227486daae0e31a05e54 \
--hash=sha256:479d92908277bed6e1a1c69b277734a7771c2b78633c224445b5c60a9f4bc1d9 \
--hash=sha256:4ffc61e8f3bf5b60346d89cd3d37231019c17a081208dfbbd6e1605ba03fa137 \
--hash=sha256:5639c2b16764c6f76eedf722dbad9a0914960d3489c0cc38694ddf9464f1bb2f \
--hash=sha256:58968d331425a6f9eedcee087f77fd3c927c88f55368f43ff7e0a19891f2642c \
--hash=sha256:5d186f32e52e66994dce4f766884bcb9c68b8da62d61d9d215bfe5fb56d21334 \
--hash=sha256:5d20cc348cca3a8aa7312f42ab953a56e15323800ca3ab0706b8cd452a3a056c \
--hash=sha256:6866df152b581f9429020320e5eb9794c8780e90f7ccb021940d7f50ee00ae0b \
--hash=sha256:7d5fe7195c27c32a64955740b949070f21cba664604291c298518d2e255931d2 \
--hash=sha256:896530bc9107b226f265effa7ef3f21270f18a2026bc09fed1ebd7b66ddf6375 \
--hash=sha256:962bc30480a08d133e631e8dfd4783ab71cc9e33d5d7c1e192f0b7c06397bb88 \
--hash=sha256:978631ec51a6bbc0b7e58f23b68a8ce9e5f09721940933e9c217068388789fe5 \
--hash=sha256:9b4d4a5dbee05a2c390bf212e78b99434efec37b17a4bff42f50285c5c8c9647 \
--hash=sha256:ab0b005721cc0039e885ac3503825661bd9810b15d4f374e473f8c89b7d5460c \
--hash=sha256:af653022a0c25ef2e3ffb2c673a50e5a0d02fecc41608f4954176f1933b12359 \
--hash=sha256:b0cc66c74c797e1db750aaa842ad5b8b78e14805a9b5d1348dc603612d3e3ff5 \
--hash=sha256:b424563394c369a804ecbee9b06dfb34997f19d00b3518e39f83a5642618397d \
--hash=sha256:c138abae3a12a94c75c10499f1cbae81294a6f983b3af066390adee73f433028 \
--hash=sha256:c6cd67722619e4d55fdb42ead64ed8843d64638e9c07f4011163e46bc512cf01 \
--hash=sha256:c91fc8e8fd78af553f98bc7f2a1d8db977334e4eea302a4bfd75b9461c2d8904 \
--hash=sha256:cad399780053fb383dc067475135e41c9fe7d901a97dd5d9c5dfb5611afc0d7d \
--hash=sha256:cb90f60e03d563ca2445099edf605c16ed1d5b15182d21831f58460c48bffb93 \
--hash=sha256:dad80b45c22e05b259e33ddd458e9e2ba099c86ccf4e88db7bbab4b747b18d06 \
--hash=sha256:dd3db61b8fe5be220eee484a17233287d0be6932d056cf5738225b9c05ef4fff \
--hash=sha256:e28d62e59a4dbd1d22e747f57d4f00c459af22181f0b2f787ea83f5a876d7c76 \
--hash=sha256:e909df4053064a97f1e6565153ff8bb389af12c5c8d29c343308760890560aff \
--hash=sha256:f3ffef566ac88f75967d7abd852ed5f182da252d23fac11b4766da3957766759 \
--hash=sha256:fc3c9babc1e1faefd62704bb46a69f359a9819eb0292e40df3fb6e3574715cd4 \
--hash=sha256:fe19d8bc5536a91a24a8133328880a41831b6c5df54599a8417b62fe015d3053
# via -r /tmp/requirementsguod07w5.in
marisa-trie==1.2.1 \
--hash=sha256:06b099dd743676dbcd8abd8465ceac8f6d97d8bfaabe2c83b965495523b4cef2 \
--hash=sha256:0ee6cf6a16d9c3d1c94e21c8e63c93d8b34bede170ca4e937e16e1c0700d399f \
@ -191,15 +193,15 @@ marisa-trie==1.2.1 \
--hash=sha256:f35c2603a6be168088ed1db6ad1704b078aa8f39974c60888fbbced95dcadad4 \
--hash=sha256:f4cd800704a5fc57e53c39c3a6b0c9b1519ebdbcb644ede3ee67a06eb542697d \
--hash=sha256:f713af9b8aa66a34cd3a78c7d150a560a75734713abe818a69021fd269e927fa
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
meson==1.8.0 \
--hash=sha256:0a9b23311271519bd03dca12d7d8b0eab582c3a2c5da433d465b6e519dc88e2f \
--hash=sha256:472b7b25da286447333d32872b82d1c6f1a34024fb8ee017d7308056c25fec1f
# via meson-python
meson-python==0.17.1 \
--hash=sha256:30a75c52578ef14aff8392677b09c39346e0a24d2b2c6204b8ed30583c11269c \
--hash=sha256:efb91f69f2e19eef7bc9a471ed2a4e730088cc6b39eacaf3e49fc4f930eb5f83
# via -r /tmp/requirementsmeh8aapn.in
meson-python==0.18.0 \
--hash=sha256:3b0fe051551cc238f5febb873247c0949cd60ded556efa130aa57021804868e2 \
--hash=sha256:c56a99ec9df669a40662fe46960321af6e4b14106c14db228709c1628e23848d
# via -r /tmp/requirementsguod07w5.in
mypy==1.15.0 \
--hash=sha256:1124a18bc11a6a62887e3e137f37f53fbae476dc36c185d549d4f837a2a6a14e \
--hash=sha256:171a9ca9a40cd1843abeca0e405bc1940cd9b305eaeea2dda769ba096932bb22 \
@ -233,11 +235,15 @@ mypy==1.15.0 \
--hash=sha256:d10d994b41fb3497719bbf866f227b3489048ea4bbbb5015357db306249f7980 \
--hash=sha256:e601a7fa172c2131bff456bb3ee08a88360760d0d2f8cbd7a75a65497e2df078 \
--hash=sha256:f95579473af29ab73a10bada2f9722856792a36ec5af5399b653aa28360290a5
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
mypy-extensions==1.1.0 \
--hash=sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505 \
--hash=sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558
# via mypy
nodeenv==1.9.1 \
--hash=sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f \
--hash=sha256:ba11c9782d29c27c70ffbdda2d7415098754709be8a7056d79a737cd901155c9
# via pyright
numpy==2.2.5 \
--hash=sha256:0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70 \
--hash=sha256:02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a \
@ -294,7 +300,7 @@ numpy==2.2.5 \
--hash=sha256:ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc \
--hash=sha256:ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051 \
--hash=sha256:f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
packaging==25.0 \
--hash=sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484 \
--hash=sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f
@ -302,14 +308,14 @@ packaging==25.0 \
# build
# meson-python
# pyproject-metadata
pip==25.1 \
--hash=sha256:13b4aa0aaad055020a11bec8a1c2a70a2b2d080e12d89b962266029fff0a16ba \
--hash=sha256:272bdd1289f80165e9070a4f881e8f9e1001bbb50378561d1af20e49bf5a2200
# via -r /tmp/requirementsmeh8aapn.in
pip==25.1.1 \
--hash=sha256:2913a38a2abf4ea6b64ab507bd9e967f3b53dc1ede74b01b0931e1ce548751af \
--hash=sha256:3de45d411d308d5054c2168185d8da7f9a2cd753dbac8acbfa88a8909ecd9077
# via -r /tmp/requirementsguod07w5.in
pybind11==2.13.6 \
--hash=sha256:237c41e29157b962835d356b370ededd57594a26d5894a795960f0047cb5caf5 \
--hash=sha256:ba6af10348c12b24e92fa086b39cfba0eff619b61ac77c406167d813b096d39a
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
pycparser==2.22 \
--hash=sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6 \
--hash=sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc
@ -318,7 +324,7 @@ pydantic==2.11.4 \
--hash=sha256:32738d19d63a226a52eed76645a98ee07c1f410ee41d93b4afbfa85ed8111c2d \
--hash=sha256:d9615eaa9ac5a063471da949c8fc16376a84afb5024688b3ff885693506764eb
# via
# -r /tmp/requirementsmeh8aapn.in
# -r /tmp/requirementsguod07w5.in
# pydantic-settings
pydantic-core==2.33.2 \
--hash=sha256:0069c9acc3f3981b9ff4cdfaf088e98d83440a4c7ea1bc07460af3d4dc22e72d \
@ -424,7 +430,7 @@ pydantic-core==2.33.2 \
pydantic-settings==2.9.1 \
--hash=sha256:59b4f431b1defb26fe620c71a7d3968a710d719f5f4cdbbdb7926edeb770f6ef \
--hash=sha256:c509bf79d27563add44e8446233359004ed85066cd096d8b510f715e6ef5d268
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
pyproject-hooks==1.2.0 \
--hash=sha256:1e859bd5c40fae9448642dd871adf459e5e2084186e8d2c2a79a824c970da1f8 \
--hash=sha256:9e5c6bfa8dcc30091c74b0cf803c81fdd29d94f01992a7707bc97babb1141913
@ -433,15 +439,39 @@ pyproject-metadata==0.9.1 \
--hash=sha256:b8b2253dd1b7062b78cf949a115f02ba7fa4114aabe63fa10528e9e1a954a816 \
--hash=sha256:ee5efde548c3ed9b75a354fc319d5afd25e9585fa918a34f62f904cc731973ad
# via meson-python
pyright==1.1.400 \
--hash=sha256:b8a3ba40481aa47ba08ffb3228e821d22f7d391f83609211335858bf05686bdb \
--hash=sha256:c80d04f98b5a4358ad3a35e241dbf2a408eee33a40779df365644f8054d2517e
# via -r /tmp/requirementsguod07w5.in
python-dotenv==1.1.0 \
--hash=sha256:41f90bc6f5f177fb41f53e87666db362025010eb28f60a01c9143bfa33a2b2d5 \
--hash=sha256:d7c01d9e2293916c18baf562d95698754b0dbbb5e74d457c45d4f6561fb9d55d
# via pydantic-settings
setuptools==80.0.1 \
--hash=sha256:20fe373a22ef9f3925512650d1db90b1b8de01cdb6df91ab1788263139cbf9a2 \
--hash=sha256:f4b49d457765b3aae7cbbeb1c71f6633a61b729408c2d1a837dae064cca82ef2
ruff==0.11.10 \
--hash=sha256:1067245bad978e7aa7b22f67113ecc6eb241dca0d9b696144256c3a879663bca \
--hash=sha256:2f071b0deed7e9245d5820dac235cbdd4ef99d7b12ff04c330a241ad3534319f \
--hash=sha256:3afead355f1d16d95630df28d4ba17fb2cb9c8dfac8d21ced14984121f639bad \
--hash=sha256:4a60e3a0a617eafba1f2e4186d827759d65348fa53708ca547e384db28406a0b \
--hash=sha256:5a94acf798a82db188f6f36575d80609072b032105d114b0f98661e1679c9125 \
--hash=sha256:5b6a9cc5b62c03cc1fea0044ed8576379dbaf751d5503d718c973d5418483641 \
--hash=sha256:5cc725fbb4d25b0f185cb42df07ab6b76c4489b4bfb740a175f3a59c70e8a224 \
--hash=sha256:607ecbb6f03e44c9e0a93aedacb17b4eb4f3563d00e8b474298a201622677947 \
--hash=sha256:7b3a522fa389402cd2137df9ddefe848f727250535c70dafa840badffb56b7a4 \
--hash=sha256:859a7bfa7bc8888abbea31ef8a2b411714e6a80f0d173c2a82f9041ed6b50f58 \
--hash=sha256:8b4564e9f99168c0f9195a0fd5fa5928004b33b377137f978055e40008a082c5 \
--hash=sha256:968220a57e09ea5e4fd48ed1c646419961a0570727c7e069842edd018ee8afed \
--hash=sha256:d522fb204b4959909ecac47da02830daec102eeb100fb50ea9554818d47a5fa6 \
--hash=sha256:da8ec977eaa4b7bf75470fb575bea2cb41a0e07c7ea9d5a0a97d13dbca697bf2 \
--hash=sha256:dc061a98d32a97211af7e7f3fa1d4ca2fcf919fb96c28f39551f35fc55bdbc19 \
--hash=sha256:ddf8967e08227d1bd95cc0851ef80d2ad9c7c0c5aab1eba31db49cf0a7b99523 \
--hash=sha256:ef69637b35fb8b210743926778d0e45e1bffa850a7c61e428c6b971549b5f5d1 \
--hash=sha256:f4854fd09c7aed5b1590e996a81aeff0c9ff51378b084eb5a0b9cd9518e6cff2
# via -r /tmp/requirementsguod07w5.in
setuptools==80.7.1 \
--hash=sha256:ca5cc1069b85dc23070a6628e6bcecb3292acac802399c7f8edc0100619f9009 \
--hash=sha256:f6ffc5f0142b1bd8d0ca94ee91b30c0ca862ffd50826da1ea85258a06fd94552
# via
# -r /tmp/requirementsmeh8aapn.in
# -r /tmp/requirementsguod07w5.in
# marisa-trie
tomli==2.2.1 \
--hash=sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6 \
@ -476,7 +506,11 @@ tomli==2.2.1 \
--hash=sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272 \
--hash=sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a \
--hash=sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7
# via -r /tmp/requirementsmeh8aapn.in
# via -r /tmp/requirementsguod07w5.in
tomlkit==0.13.2 \
--hash=sha256:7a974427f6e119197f670fbbbeae7bef749a6c14e793db934baefc1b5f03efde \
--hash=sha256:fff5fe59a87295b278abd31bec92c15d9bc4a06885ab12bcea52c71119392e79
# via -r /tmp/requirementsguod07w5.in
typing-extensions==4.13.2 \
--hash=sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c \
--hash=sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef
@ -484,6 +518,7 @@ typing-extensions==4.13.2 \
# mypy
# pydantic
# pydantic-core
# pyright
# typing-inspection
typing-inspection==0.4.0 \
--hash=sha256:50e72559fcd2a6367a19f7a7e610e6afcb9fac940c650290eed893d61386832f \
@ -491,23 +526,23 @@ typing-inspection==0.4.0 \
# via
# pydantic
# pydantic-settings
uv==0.7.1 \
--hash=sha256:1d6f914601b769ad0f9a090573e2dc4365e0eaeb377d09cd74c5d47c97002c20 \
--hash=sha256:2220b942b2eb8a0c5cc91af5d57c2eef7a25053037f9f311e85a2d5dd9154f88 \
--hash=sha256:40a15f1fc73df852d7655530e5768e29dc7227ab25d9baeb711a8dde9e7f8234 \
--hash=sha256:425064544f1e20b014447cf523e04e891bf6962e60dd25f495724b271f8911e0 \
--hash=sha256:53eabd3aabc774d01da7836c58675c3e5cafd4285540e846debddfd056345d2c \
--hash=sha256:5526f68ce9a5ba35ef13a14d144dc834b4940bd460fedc55f8313f9b7534b63c \
--hash=sha256:57690b6e3b946dcf8b7b5836806d632f1a0d7667eae7af1302da812dbb7be7e5 \
--hash=sha256:6bbf096970de17be0c2a1e28f24ebddaad9ad4d0f8d8f75364149cdde75d7462 \
--hash=sha256:7025c9ba6f6f3d842a2b2915a579ff87eda901736105ee0379653bb4ff6b50d2 \
--hash=sha256:7239a0ffd4695300a3b6d2004ab664e80be7ef2c46b677b0f47d6409affe2212 \
--hash=sha256:877145523c348344c6fa2651559e9555dc4210730ad246afb4dd3414424afb3d \
--hash=sha256:9b503d808310a978453bb91a448ffaf61542b192127c30be136443debac9cdaa \
--hash=sha256:bf54fab715d6eb2332ff3276f80fddc6ee9e7faf29669d4bfb1918dd53ffc408 \
--hash=sha256:c5572a2b1d6dbf1cbff315e55931f891d8706ef5ed76e94a7d5e6e6dae075b3a \
--hash=sha256:c94cb14377c0efa65eb0267cfebfb5212729dc73fd61e4897e38839e3e72d763 \
--hash=sha256:d9c0c70bd3734cdae20cf22889a0394307a86451bb7c9126f0542eb998dd1472 \
--hash=sha256:ea2024e6a9daeea3ff6cab8ad4afe3b2aa0be9e07bad57646a749896e58648ad \
--hash=sha256:ef8765771785a56b2e5485f3c6f9ec04cbd2c077be2fe1f2786ded5710e33c0d
# via -r /tmp/requirementsmeh8aapn.in
uv==0.7.3 \
--hash=sha256:0646e463365e7277f22200ce2d43b7a44e5a3192320500b4983b4fe34d69a5fb \
--hash=sha256:0a446d4e5b10ce8a793156a276727bb7affa96a85e80dc5ad34e0c2de7e71cc8 \
--hash=sha256:3e6e1fd5755d4ef4c6e1ce55bd2c6d9dec278a8bef5752703d702ce03704fe29 \
--hash=sha256:44e2f3fcbd1ab519bdb68986449b2e3103d2261be95f985cadcf7ec7c510b595 \
--hash=sha256:4809e5f7f5b2d6423d6573fda5655389c955ca649499fe9750b61af95daf9b7d \
--hash=sha256:5eb4872888a9fb10b62cc00be8e84822d63d3e622a5f340248e53ecf321dba96 \
--hash=sha256:863ceb63aefc7c2db9918313a1cb3c8bf3fc3d59b656b617db9e4abad90373f3 \
--hash=sha256:90990e4c289feee24164c8e463fc0ebc9a336960119cd256acca7c1439f0f536 \
--hash=sha256:acef117a0c52299e60c6f7a3e60849050cd233704c561f688fac1100d113da2e \
--hash=sha256:acff7fba5ff40dcb5a42de496db92a3965edac7a3d687d9b013ba6e0336995df \
--hash=sha256:b1414a026c153ae0731daed0812b17bf77d34eafedaeb3a5c72e08181aea116b \
--hash=sha256:c976fce3d1068a1d007f50127cc7873d67643c1a60439564970f092d9be41877 \
--hash=sha256:cb2547fd1466698e9b4f11de5eef7055b8cbcc3c693d79f6d747e3f8e6be2ab7 \
--hash=sha256:cc27207c35c959d2e0e873e86a80a2470a77b7a34a4512a831e8d4f7c87f4404 \
--hash=sha256:d246243f348796730e8ea9736ddd48702d4448d98af5e61693063ed616e30378 \
--hash=sha256:db8a5d5995b160158405379deadf0ffccf849a5e7ce048900b73517daf109e2c \
--hash=sha256:f37c8a6b172776fb5305afe0699907aff44a778669de7a8fbe5a9c09c1a88a97 \
--hash=sha256:fbb2d322d453e498e1431c51421cee597962ecd3f93fcef853b258e9c7e7636c
# via -r /tmp/requirementsguod07w5.in

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.