# %% [markdown] #
#

MLB Player Digital Engagement Forecasting

#

LightGBM + CatBoost + ANN 2505f2

#
# %% [markdown] #
#
# %% [markdown] #
#

If you find this work useful, please don't forget upvoting :)

#
# %% [markdown] # #### Thanks to: @lhagiimn https://www.kaggle.com/lhagiimn/lightgbm-catboost-ann-2505f2 # # #### https://www.kaggle.com/columbia2131/mlb-lightgbm-starter-dataset-code-en-ja # # #### https://www.kaggle.com/mlconsult/1-3816-lb-lbgm-descriptive-stats-param-tune # # #### https://www.kaggle.com/batprem/lightgbm-ann-weight-with-love # # #### https://www.kaggle.com/mlconsult/1-3816-lb-lbgm-descriptive-stats-param-tune # # #### https://www.kaggle.com/ulrich07/mlb-ann-with-lags-tf-keras # # %% [markdown] #
#
# %% [markdown] # ## About Dataset # %% [markdown] # Train.csv is stored as a csv file with each column as follows. # # train.csvを以下のようにして各カラムをcsvファイルとして保管しています。 # %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:16:47.242749Z","iopub.execute_input":"2021-06-26T07:16:47.243324Z","iopub.status.idle":"2021-06-26T07:16:48.030215Z","shell.execute_reply.started":"2021-06-26T07:16:47.243266Z","shell.execute_reply":"2021-06-26T07:16:48.029Z"}} import os assert os.system(r'''cp ../input/fork-of-1-35-lightgbm-ann-2505f2-c4e96a/* .''') == 0 # %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:16:48.031858Z","iopub.execute_input":"2021-06-26T07:16:48.032396Z","iopub.status.idle":"2021-06-26T07:16:48.799514Z","shell.execute_reply.started":"2021-06-26T07:16:48.032357Z","shell.execute_reply":"2021-06-26T07:16:48.798628Z"}} assert os.system(r'''ls''') == 0 # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:48.801992Z","iopub.execute_input":"2021-06-26T07:16:48.802645Z","iopub.status.idle":"2021-06-26T07:16:48.813801Z","shell.execute_reply.started":"2021-06-26T07:16:48.802592Z","shell.execute_reply":"2021-06-26T07:16:48.812863Z"}} #%%capture """ !pip install pandarallel import gc import numpy as np import pandas as pd from pathlib import Path from pandarallel import pandarallel pandarallel.initialize() BASE_DIR = Path('../input/mlb-player-digital-engagement-forecasting') train = pd.read_csv(BASE_DIR / 'train.csv') null = np.nan true = True false = False for col in train.columns: if col == 'date': continue _index = train[col].notnull() train.loc[_index, col] = train.loc[_index, col].parallel_apply(lambda x: eval(x)) outputs = [] for index, date, record in train.loc[_index, ['date', col]].itertuples(): _df = pd.DataFrame(record) _df['index'] = index _df['date'] = date outputs.append(_df) outputs = pd.concat(outputs).reset_index(drop=True) outputs.to_csv(f'{col}_train.csv', index=False) outputs.to_pickle(f'{col}_train.pkl') del outputs del train[col] gc.collect() """ # %% [markdown] {"execution":{"iopub.status.busy":"2021-06-16T09:14:33.869464Z","iopub.execute_input":"2021-06-16T09:14:33.869905Z","iopub.status.idle":"2021-06-16T09:14:33.874766Z","shell.execute_reply.started":"2021-06-16T09:14:33.869879Z","shell.execute_reply":"2021-06-16T09:14:33.873097Z"}} # ## Training # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:48.81564Z","iopub.execute_input":"2021-06-26T07:16:48.816326Z","iopub.status.idle":"2021-06-26T07:16:50.081995Z","shell.execute_reply.started":"2021-06-26T07:16:48.816246Z","shell.execute_reply":"2021-06-26T07:16:50.080828Z"}} import numpy as np import pandas as pd from pathlib import Path from sklearn.metrics import mean_absolute_error from datetime import timedelta from functools import reduce from tqdm import tqdm import lightgbm as lgbm import mlb import os # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:50.083534Z","iopub.execute_input":"2021-06-26T07:16:50.083899Z","iopub.status.idle":"2021-06-26T07:16:50.088159Z","shell.execute_reply.started":"2021-06-26T07:16:50.083863Z","shell.execute_reply":"2021-06-26T07:16:50.087357Z"}} BASE_DIR = Path('../input/mlb-player-digital-engagement-forecasting') TRAIN_DIR = Path('../input/mlb-pdef-train-dataset') # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:50.08951Z","iopub.execute_input":"2021-06-26T07:16:50.090053Z","iopub.status.idle":"2021-06-26T07:16:54.221868Z","shell.execute_reply.started":"2021-06-26T07:16:50.090018Z","shell.execute_reply":"2021-06-26T07:16:54.220656Z"}} players = pd.read_csv(BASE_DIR / 'players.csv') rosters = pd.read_pickle(TRAIN_DIR / 'rosters_train.pkl') targets = pd.read_pickle(TRAIN_DIR / 'nextDayPlayerEngagement_train.pkl') scores = pd.read_pickle(TRAIN_DIR / 'playerBoxScores_train.pkl') scores = scores.groupby(['playerId', 'date']).sum().reset_index() # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.223547Z","iopub.execute_input":"2021-06-26T07:16:54.224Z","iopub.status.idle":"2021-06-26T07:16:54.243132Z","shell.execute_reply.started":"2021-06-26T07:16:54.22395Z","shell.execute_reply":"2021-06-26T07:16:54.242076Z"}} targets_cols = ['playerId', 'target1', 'target2', 'target3', 'target4', 'date'] players_cols = ['playerId', 'primaryPositionName'] rosters_cols = ['playerId', 'teamId', 'status', 'date'] scores_cols = ['playerId', 'battingOrder', 'gamesPlayedBatting', 'flyOuts', 'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns', 'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch', 'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay', 'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi', 'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference', 'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching', 'completeGamesPitching', 'shutoutsPitching', 'winsPitching', 'lossesPitching', 'flyOutsPitching', 'airOutsPitching', 'groundOutsPitching', 'runsPitching', 'doublesPitching', 'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching', 'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching', 'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching', 'stolenBasesPitching', 'inningsPitched', 'saveOpportunities', 'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls', 'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching', 'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners', 'inheritedRunnersScored', 'catchersInterferencePitching', 'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves', 'assists', 'putOuts', 'errors', 'chances', 'date'] feature_cols = ['label_playerId', 'label_primaryPositionName', 'label_teamId', 'label_status', 'battingOrder', 'gamesPlayedBatting', 'flyOuts', 'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns', 'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch', 'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay', 'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi', 'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference', 'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching', 'completeGamesPitching', 'shutoutsPitching', 'winsPitching', 'lossesPitching', 'flyOutsPitching', 'airOutsPitching', 'groundOutsPitching', 'runsPitching', 'doublesPitching', 'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching', 'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching', 'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching', 'stolenBasesPitching', 'inningsPitched', 'saveOpportunities', 'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls', 'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching', 'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners', 'inheritedRunnersScored', 'catchersInterferencePitching', 'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves', 'assists', 'putOuts', 'errors', 'chances','target1_mean', 'target1_median', 'target1_std', 'target1_min', 'target1_max', 'target1_prob', 'target2_mean', 'target2_median', 'target2_std', 'target2_min', 'target2_max', 'target2_prob', 'target3_mean', 'target3_median', 'target3_std', 'target3_min', 'target3_max', 'target3_prob', 'target4_mean', 'target4_median', 'target4_std', 'target4_min', 'target4_max', 'target4_prob'] feature_cols2 = ['label_playerId', 'label_primaryPositionName', 'label_teamId', 'label_status', 'battingOrder', 'gamesPlayedBatting', 'flyOuts', 'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns', 'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch', 'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay', 'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi', 'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference', 'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching', 'completeGamesPitching', 'shutoutsPitching', 'winsPitching', 'lossesPitching', 'flyOutsPitching', 'airOutsPitching', 'groundOutsPitching', 'runsPitching', 'doublesPitching', 'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching', 'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching', 'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching', 'stolenBasesPitching', 'inningsPitched', 'saveOpportunities', 'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls', 'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching', 'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners', 'inheritedRunnersScored', 'catchersInterferencePitching', 'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves', 'assists', 'putOuts', 'errors', 'chances','target1_mean', 'target1_median', 'target1_std', 'target1_min', 'target1_max', 'target1_prob', 'target2_mean', 'target2_median', 'target2_std', 'target2_min', 'target2_max', 'target2_prob', 'target3_mean', 'target3_median', 'target3_std', 'target3_min', 'target3_max', 'target3_prob', 'target4_mean', 'target4_median', 'target4_std', 'target4_min', 'target4_max', 'target4_prob', 'target1'] # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.244866Z","iopub.execute_input":"2021-06-26T07:16:54.24532Z","iopub.status.idle":"2021-06-26T07:16:54.296844Z","shell.execute_reply.started":"2021-06-26T07:16:54.245257Z","shell.execute_reply":"2021-06-26T07:16:54.295689Z"}} player_target_stats = pd.read_csv("../input/player-target-stats/player_target_stats.csv") data_names=player_target_stats.columns.values.tolist() data_names # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:16:54.300157Z","iopub.execute_input":"2021-06-26T07:16:54.300622Z","iopub.status.idle":"2021-06-26T07:17:02.252208Z","shell.execute_reply.started":"2021-06-26T07:16:54.300578Z","shell.execute_reply":"2021-06-26T07:17:02.250423Z"}} # creat dataset train = targets[targets_cols].merge(players[players_cols], on=['playerId'], how='left') train = train.merge(rosters[rosters_cols], on=['playerId', 'date'], how='left') train = train.merge(scores[scores_cols], on=['playerId', 'date'], how='left') train = train.merge(player_target_stats, how='inner', left_on=["playerId"],right_on=["playerId"]) # label encoding player2num = {c: i for i, c in enumerate(train['playerId'].unique())} position2num = {c: i for i, c in enumerate(train['primaryPositionName'].unique())} teamid2num = {c: i for i, c in enumerate(train['teamId'].unique())} status2num = {c: i for i, c in enumerate(train['status'].unique())} train['label_playerId'] = train['playerId'].map(player2num) train['label_primaryPositionName'] = train['primaryPositionName'].map(position2num) train['label_teamId'] = train['teamId'].map(teamid2num) train['label_status'] = train['status'].map(status2num) # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.253453Z","iopub.status.idle":"2021-06-26T07:17:02.254076Z"}} train_X = train[feature_cols] train_y = train[['target1', 'target2', 'target3', 'target4']] _index = (train['date'] < 20210401) x_train1 = train_X.loc[_index].reset_index(drop=True) y_train1 = train_y.loc[_index].reset_index(drop=True) x_valid1 = train_X.loc[~_index].reset_index(drop=True) y_valid1 = train_y.loc[~_index].reset_index(drop=True) # %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.255068Z","iopub.status.idle":"2021-06-26T07:17:02.255685Z"}} train_X = train[feature_cols2] train_y = train[['target1', 'target2', 'target3', 'target4']] _index = (train['date'] < 20210401) x_train2 = train_X.loc[_index].reset_index(drop=True) y_train2 = train_y.loc[_index].reset_index(drop=True) x_valid2 = train_X.loc[~_index].reset_index(drop=True) y_valid2 = train_y.loc[~_index].reset_index(drop=True) # %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.256629Z","iopub.status.idle":"2021-06-26T07:17:02.257215Z"}} train_X # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.258224Z","iopub.status.idle":"2021-06-26T07:17:02.258854Z"}} def fit_lgbm(x_train, y_train, x_valid, y_valid, params: dict=None, verbose=100): oof_pred = np.zeros(len(y_valid), dtype=np.float32) model = lgbm.LGBMRegressor(**params) model.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], early_stopping_rounds=verbose, verbose=verbose) oof_pred = model.predict(x_valid) score = mean_absolute_error(oof_pred, y_valid) print('mae:', score) return oof_pred, model, score # training lightgbm params1 = {'objective':'mae', 'reg_alpha': 0.14947461820098767, 'reg_lambda': 0.10185644384043743, 'n_estimators': 3633, 'learning_rate': 0.08046301304430488, 'num_leaves': 674, 'feature_fraction': 0.9101240539122566, 'bagging_fraction': 0.9884451442950513, 'bagging_freq': 8, 'min_child_samples': 51} params2 = { 'objective':'mae', 'reg_alpha': 0.1, 'reg_lambda': 0.1, 'n_estimators': 80, 'learning_rate': 0.1, 'random_state': 42, "num_leaves": 22 } params4 = {'objective':'mae', 'reg_alpha': 0.016468100279441976, 'reg_lambda': 0.09128335764019105, 'n_estimators': 9868, 'learning_rate': 0.10528150510326864, 'num_leaves': 157, 'feature_fraction': 0.5419185713426886, 'bagging_fraction': 0.2637405128936662, 'bagging_freq': 19, 'min_child_samples': 71} params = { 'objective':'mae', 'reg_alpha': 0.1, 'reg_lambda': 0.1, 'n_estimators': 10000, 'learning_rate': 0.1, 'random_state': 42, "num_leaves": 100 } # Slow from this point !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! oof1, model1, score1 = fit_lgbm( x_train1, y_train1['target1'], x_valid1, y_valid1['target1'], params1 ) oof2, model2, score2 = fit_lgbm( x_train2, y_train2['target2'], x_valid2, y_valid2['target2'], params2 ) oof3, model3, score3 = fit_lgbm( x_train2, y_train2['target3'], x_valid2, y_valid2['target3'], params ) oof4, model4, score4 = fit_lgbm( x_train2, y_train2['target4'], x_valid2, y_valid2['target4'], params4 ) score = (score1+score2+score3+score4) / 4 print(f'score: {score}') # %% [code] import pickle from catboost import CatBoostRegressor def fit_lgbm(x_train, y_train, x_valid, y_valid, target, params: dict=None, verbose=100): oof_pred_lgb = np.zeros(len(y_valid), dtype=np.float32) oof_pred_cat = np.zeros(len(y_valid), dtype=np.float32) if os.path.isfile(f'../input/mlb-lgbm-and-catboost-models/model_lgb_{target}.pkl'): with open(f'../input/mlb-lgbm-and-catboost-models/model_lgb_{target}.pkl', 'rb') as fin: model = pickle.load(fin) else: model = lgbm.LGBMRegressor(**params) model.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], early_stopping_rounds=verbose, verbose=verbose) with open(f'model_lgb_{target}.pkl', 'wb') as handle: pickle.dump(model, handle, protocol=pickle.HIGHEST_PROTOCOL) oof_pred_lgb = model.predict(x_valid) score_lgb = mean_absolute_error(oof_pred_lgb, y_valid) print('mae:', score_lgb) if os.path.isfile(f'../input/mlb-lgbm-and-catboost-models/model_cb_{target}.pkl'): with open(f'../input/mlb-lgbm-and-catboost-models/model_cb_{target}.pkl', 'rb') as fin: model_cb = pickle.load(fin) else: model_cb = CatBoostRegressor( n_estimators=2000, learning_rate=0.05, loss_function='MAE', eval_metric='MAE', max_bin=50, subsample=0.9, colsample_bylevel=0.5, verbose=100) model_cb.fit(x_train, y_train, use_best_model=True, eval_set=(x_valid, y_valid), early_stopping_rounds=25) with open(f'model_cb_{target}.pkl', 'wb') as handle: pickle.dump(model_cb, handle, protocol=pickle.HIGHEST_PROTOCOL) oof_pred_cat = model_cb.predict(x_valid) score_cat = mean_absolute_error(oof_pred_cat, y_valid) print('mae:', score_cat) return oof_pred_lgb, model, oof_pred_cat, model_cb, score_lgb, score_cat # training lightgbm params = { 'boosting_type': 'gbdt', 'objective':'mae', 'subsample': 0.5, 'subsample_freq': 1, 'learning_rate': 0.03, 'num_leaves': 2**11-1, 'min_data_in_leaf': 2**12-1, 'feature_fraction': 0.5, 'max_bin': 100, 'n_estimators': 2500, 'boost_from_average': False, "random_seed":42, } oof_pred_lgb2, model_lgb2, oof_pred_cat2, model_cb2, score_lgb2, score_cat2 = fit_lgbm( x_train1, y_train1['target2'], x_valid1, y_valid1['target2'], 2, params ) oof_pred_lgb1, model_lgb1, oof_pred_cat1, model_cb1, score_lgb1, score_cat1 = fit_lgbm( x_train1, y_train1['target1'], x_valid1, y_valid1['target1'], 1, params ) oof_pred_lgb3, model_lgb3, oof_pred_cat3, model_cb3, score_lgb3, score_cat3 = fit_lgbm( x_train1, y_train1['target3'], x_valid1, y_valid1['target3'], 3, params ) oof_pred_lgb4, model_lgb4, oof_pred_cat4, model_cb4, score_lgb4, score_cat4= fit_lgbm( x_train1, y_train1['target4'], x_valid1, y_valid1['target4'], 4, params ) score = (score_lgb1+score_lgb2+score_lgb3+score_lgb4) / 4 print(f'LightGBM score: {score}') score = (score_cat1+score_cat2+score_cat3+score_cat4) / 4 print(f'Catboost score: {score}') # %% [markdown] # ## Inference # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.259872Z","iopub.status.idle":"2021-06-26T07:17:02.260506Z"}} players_cols = ['playerId', 'primaryPositionName'] rosters_cols = ['playerId', 'teamId', 'status'] scores_cols = ['playerId', 'battingOrder', 'gamesPlayedBatting', 'flyOuts', 'groundOuts', 'runsScored', 'doubles', 'triples', 'homeRuns', 'strikeOuts', 'baseOnBalls', 'intentionalWalks', 'hits', 'hitByPitch', 'atBats', 'caughtStealing', 'stolenBases', 'groundIntoDoublePlay', 'groundIntoTriplePlay', 'plateAppearances', 'totalBases', 'rbi', 'leftOnBase', 'sacBunts', 'sacFlies', 'catchersInterference', 'pickoffs', 'gamesPlayedPitching', 'gamesStartedPitching', 'completeGamesPitching', 'shutoutsPitching', 'winsPitching', 'lossesPitching', 'flyOutsPitching', 'airOutsPitching', 'groundOutsPitching', 'runsPitching', 'doublesPitching', 'triplesPitching', 'homeRunsPitching', 'strikeOutsPitching', 'baseOnBallsPitching', 'intentionalWalksPitching', 'hitsPitching', 'hitByPitchPitching', 'atBatsPitching', 'caughtStealingPitching', 'stolenBasesPitching', 'inningsPitched', 'saveOpportunities', 'earnedRuns', 'battersFaced', 'outsPitching', 'pitchesThrown', 'balls', 'strikes', 'hitBatsmen', 'balks', 'wildPitches', 'pickoffsPitching', 'rbiPitching', 'gamesFinishedPitching', 'inheritedRunners', 'inheritedRunnersScored', 'catchersInterferencePitching', 'sacBuntsPitching', 'sacFliesPitching', 'saves', 'holds', 'blownSaves', 'assists', 'putOuts', 'errors', 'chances'] null = np.nan true = True false = False # %% [code] {"execution":{"iopub.status.busy":"2021-06-26T07:17:02.26162Z","iopub.status.idle":"2021-06-26T07:17:02.262287Z"}} import pandas as pd import numpy as np from datetime import timedelta from tqdm import tqdm import gc from functools import reduce from sklearn.model_selection import StratifiedKFold ROOT_DIR = "../input/mlb-player-digital-engagement-forecasting" #=======================# def flatten(df, col): du = (df.pivot(index="playerId", columns="EvalDate", values=col).add_prefix(f"{col}_"). rename_axis(None, axis=1).reset_index()) return du #============================# def reducer(left, right): return left.merge(right, on="playerId") #======================== TGTCOLS = ["target1","target2","target3","target4"] def train_lag(df, lag=1): dp = df[["playerId","EvalDate"]+TGTCOLS].copy() dp["EvalDate"] =dp["EvalDate"] + timedelta(days=lag) df = df.merge(dp, on=["playerId", "EvalDate"], suffixes=["",f"_{lag}"], how="left") return df #================================= def test_lag(sub): sub["playerId"] = sub["date_playerId"].apply(lambda s: int( s.split("_")[1] ) ) assert sub.date.nunique() == 1 dte = sub["date"].unique()[0] eval_dt = pd.to_datetime(dte, format="%Y%m%d") dtes = [eval_dt + timedelta(days=-k) for k in LAGS] mp_dtes = {eval_dt + timedelta(days=-k):k for k in LAGS} sl = LAST.loc[LAST.EvalDate.between(dtes[-1], dtes[0]), ["EvalDate","playerId"]+TGTCOLS].copy() sl["EvalDate"] = sl["EvalDate"].map(mp_dtes) du = [flatten(sl, col) for col in TGTCOLS] du = reduce(reducer, du) return du, eval_dt # #=============== tr = pd.read_csv("../input/mlb-data/target.csv") print(tr.shape) gc.collect() tr["EvalDate"] = pd.to_datetime(tr["EvalDate"]) tr["EvalDate"] = tr["EvalDate"] + timedelta(days=-1) tr["EvalYear"] = tr["EvalDate"].dt.year MED_DF = tr.groupby(["playerId","EvalYear"])[TGTCOLS].median().reset_index() MEDCOLS = ["tgt1_med","tgt2_med", "tgt3_med", "tgt4_med"] MED_DF.columns = ["playerId","EvalYear"] + MEDCOLS LAGS = list(range(1,21)) FECOLS = [f"{col}_{lag}" for lag in reversed(LAGS) for col in TGTCOLS] for lag in tqdm(LAGS): tr = train_lag(tr, lag=lag) gc.collect() #=========== tr = tr.sort_values(by=["playerId", "EvalDate"]) print(tr.shape) tr = tr.dropna() print(tr.shape) tr = tr.merge(MED_DF, on=["playerId","EvalYear"]) gc.collect() X = tr[FECOLS+MEDCOLS].values y = tr[TGTCOLS].values cl = tr["playerId"].values NFOLDS = 6 skf = StratifiedKFold(n_splits=NFOLDS) folds = skf.split(X, cl) folds = list(folds) import tensorflow as tf import tensorflow.keras.layers as L import tensorflow.keras.models as M from sklearn.metrics import mean_absolute_error, mean_squared_error from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping tf.random.set_seed(777) def make_model(n_in): inp = L.Input(name="inputs", shape=(n_in,)) x = L.Dense(50, activation="relu", name="d1")(inp) x = L.Dense(50, activation="relu", name="d2")(x) preds = L.Dense(4, activation="linear", name="preds")(x) model = M.Model(inp, preds, name="ANN") model.compile(loss="mean_absolute_error", optimizer="adam") return model net = make_model(X.shape[1]) print(net.summary()) oof = np.zeros(y.shape) nets = [] for idx in range(NFOLDS): print("FOLD:", idx) tr_idx, val_idx = folds[idx] ckpt = ModelCheckpoint(f"w{idx}.h5", monitor='val_loss', verbose=1, save_best_only=True,mode='min') reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,patience=3, min_lr=0.0005) es = EarlyStopping(monitor='val_loss', patience=6) reg = make_model(X.shape[1]) # reg.fit(X[tr_idx], y[tr_idx], epochs=10, batch_size=35_000, validation_data=(X[val_idx], y[val_idx]), # verbose=1, callbacks=[ckpt, reduce_lr, es]) reg.load_weights(f"w{idx}.h5") oof[val_idx] = reg.predict(X[val_idx], batch_size=50_000, verbose=1) nets.append(reg) gc.collect() # # mae = mean_absolute_error(y, oof) mse = mean_squared_error(y, oof, squared=False) print("mae:", mae) print("mse:", mse) # Historical information to use in prediction time bound_dt = pd.to_datetime("2021-01-01") LAST = tr.loc[tr.EvalDate>bound_dt].copy() LAST_MED_DF = MED_DF.loc[MED_DF.EvalYear==2021].copy() LAST_MED_DF.drop("EvalYear", axis=1, inplace=True) del tr #""" import mlb FE = []; SUB = []; # %% [markdown] #
#
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.263332Z","iopub.status.idle":"2021-06-26T07:17:02.263974Z"}} import copy env = mlb.make_env() # initialize the environment iter_test = env.iter_test() # iterator which loops over each date in test set for (test_df, sample_prediction_df) in iter_test: # make predictions here sub = copy.deepcopy(sample_prediction_df.reset_index()) sample_prediction_df = copy.deepcopy(sample_prediction_df.reset_index(drop=True)) # LGBM summit # creat dataset sample_prediction_df['playerId'] = sample_prediction_df['date_playerId']\ .map(lambda x: int(x.split('_')[1])) # Dealing with missing values if test_df['rosters'].iloc[0] == test_df['rosters'].iloc[0]: test_rosters = pd.DataFrame(eval(test_df['rosters'].iloc[0])) else: test_rosters = pd.DataFrame({'playerId': sample_prediction_df['playerId']}) for col in rosters.columns: if col == 'playerId': continue test_rosters[col] = np.nan if test_df['playerBoxScores'].iloc[0] == test_df['playerBoxScores'].iloc[0]: test_scores = pd.DataFrame(eval(test_df['playerBoxScores'].iloc[0])) else: test_scores = pd.DataFrame({'playerId': sample_prediction_df['playerId']}) for col in scores.columns: if col == 'playerId': continue test_scores[col] = np.nan test_scores = test_scores.groupby('playerId').sum().reset_index() test = sample_prediction_df[['playerId']].copy() test = test.merge(players[players_cols], on='playerId', how='left') test = test.merge(test_rosters[rosters_cols], on='playerId', how='left') test = test.merge(test_scores[scores_cols], on='playerId', how='left') test = test.merge(player_target_stats, how='inner', left_on=["playerId"],right_on=["playerId"]) test['label_playerId'] = test['playerId'].map(player2num) test['label_primaryPositionName'] = test['primaryPositionName'].map(position2num) test['label_teamId'] = test['teamId'].map(teamid2num) test['label_status'] = test['status'].map(status2num) test_X = test[feature_cols] # predict pred1 = model1.predict(test_X) # predict pred_lgd1 = model_lgb1.predict(test_X) pred_lgd2 = model_lgb2.predict(test_X) pred_lgd3 = model_lgb3.predict(test_X) pred_lgd4 = model_lgb4.predict(test_X) pred_cat1 = model_cb1.predict(test_X) pred_cat2 = model_cb2.predict(test_X) pred_cat3 = model_cb3.predict(test_X) pred_cat4 = model_cb4.predict(test_X) test['target1'] = np.clip(pred1,0,100) test_X = test[feature_cols2] pred2 = model2.predict(test_X) pred3 = model3.predict(test_X) pred4 = model4.predict(test_X) # merge submission sample_prediction_df['target1'] = 0.65*np.clip(pred1, 0, 100)+0.25*np.clip(pred_lgd1, 0, 100)+0.10*np.clip(pred_cat1, 0, 100) sample_prediction_df['target2'] = 0.65*np.clip(pred2, 0, 100)+0.25*np.clip(pred_lgd2, 0, 100)+0.10*np.clip(pred_cat2, 0, 100) sample_prediction_df['target3'] = 0.65*np.clip(pred3, 0, 100)+0.25*np.clip(pred_lgd3, 0, 100)+0.10*np.clip(pred_cat3, 0, 100) sample_prediction_df['target4'] = 0.65*np.clip(pred4, 0, 100)+0.25*np.clip(pred_lgd4, 0, 100)+0.10*np.clip(pred_cat4, 0, 100) sample_prediction_df = sample_prediction_df.fillna(0.) del sample_prediction_df['playerId'] # TF summit # Features computation at Evaluation Date sub_fe, eval_dt = test_lag(sub) sub_fe = sub_fe.merge(LAST_MED_DF, on="playerId", how="left") sub_fe = sub_fe.fillna(0.) _preds = 0. for reg in nets: _preds += reg.predict(sub_fe[FECOLS + MEDCOLS]) / NFOLDS sub_fe[TGTCOLS] = np.clip(_preds, 0, 100) sub.drop(["date"]+TGTCOLS, axis=1, inplace=True) sub = sub.merge(sub_fe[["playerId"]+TGTCOLS], on="playerId", how="left") sub.drop("playerId", axis=1, inplace=True) sub = sub.fillna(0.) # Blending blend = pd.concat( [sub[['date_playerId']], (0.35*sub.drop('date_playerId', axis=1) + 0.65*sample_prediction_df.drop('date_playerId', axis=1))], axis=1 ) env.predict(blend) # Update Available information sub_fe["EvalDate"] = eval_dt #sub_fe.drop(MEDCOLS, axis=1, inplace=True) LAST = LAST.append(sub_fe) LAST = LAST.drop_duplicates(subset=["EvalDate","playerId"], keep="last") # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.264951Z","iopub.status.idle":"2021-06-26T07:17:02.265581Z"}} pd.concat( [sub[['date_playerId']], (sub.drop('date_playerId', axis=1) + sample_prediction_df.drop('date_playerId', axis=1)) / 2], axis=1 ) # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-06-26T07:17:02.26657Z","iopub.status.idle":"2021-06-26T07:17:02.267169Z"}} sample_prediction_df # %% [markdown] #
#