1. 7f51a0332edd0c675c2d314ca3e62df7ef041281 deps/ipython (8.4.0-33-g7f51a0332)
977 lines
82 KiB
Plaintext
977 lines
82 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Custom Display Logic"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Overview"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"As described in the [Rich Output](Rich Output.ipynb) tutorial, the IPython display system can display rich representations of objects in the following formats:\n",
|
||
"\n",
|
||
"* JavaScript\n",
|
||
"* HTML\n",
|
||
"* PNG\n",
|
||
"* JPEG\n",
|
||
"* SVG\n",
|
||
"* LaTeX\n",
|
||
"* PDF\n",
|
||
"\n",
|
||
"This Notebook shows how you can add custom display logic to your own classes, so that they can be displayed using these rich representations. There are two ways of accomplishing this:\n",
|
||
"\n",
|
||
"1. Implementing special display methods such as `_repr_html_` when you define your class.\n",
|
||
"2. Registering a display function for a particular existing class.\n",
|
||
"\n",
|
||
"This Notebook describes and illustrates both approaches."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Import the IPython display functions."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from IPython.display import (\n",
|
||
" display, display_html, display_png, display_svg\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Parts of this notebook need the matplotlib inline backend:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"plt.ion()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Special display methods"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The main idea of the first approach is that you have to implement special display methods when you define your class, one for each representation you want to use. Here is a list of the names of the special methods and the values they must return:\n",
|
||
"\n",
|
||
"* `_repr_html_`: return raw HTML as a string\n",
|
||
"* `_repr_json_`: return a JSONable dict\n",
|
||
"* `_repr_jpeg_`: return raw JPEG data\n",
|
||
"* `_repr_png_`: return raw PNG data\n",
|
||
"* `_repr_svg_`: return raw SVG data as a string\n",
|
||
"* `_repr_latex_`: return LaTeX commands in a string surrounded by \"$\".\n",
|
||
"* `_repr_mimebundle_`: return a full mimebundle containing the mapping from all mimetypes to data "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"As an illustration, we build a class that holds data generated by sampling a Gaussian distribution with given mean and standard deviation. Here is the definition of the `Gaussian` class, which has a custom PNG and LaTeX representation."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from IPython.core.pylabtools import print_figure\n",
|
||
"from IPython.display import Image, SVG, Math\n",
|
||
"\n",
|
||
"class Gaussian(object):\n",
|
||
" \"\"\"A simple object holding data sampled from a Gaussian distribution.\n",
|
||
" \"\"\"\n",
|
||
" def __init__(self, mean=0.0, std=1, size=1000):\n",
|
||
" self.data = np.random.normal(mean, std, size)\n",
|
||
" self.mean = mean\n",
|
||
" self.std = std\n",
|
||
" self.size = size\n",
|
||
" # For caching plots that may be expensive to compute\n",
|
||
" self._png_data = None\n",
|
||
" \n",
|
||
" def _figure_data(self, format):\n",
|
||
" fig, ax = plt.subplots()\n",
|
||
" ax.hist(self.data, bins=50)\n",
|
||
" ax.set_title(self._repr_latex_())\n",
|
||
" ax.set_xlim(-10.0,10.0)\n",
|
||
" data = print_figure(fig, format)\n",
|
||
" # We MUST close the figure, otherwise IPython's display machinery\n",
|
||
" # will pick it up and send it as output, resulting in a double display\n",
|
||
" plt.close(fig)\n",
|
||
" return data\n",
|
||
" \n",
|
||
" def _repr_png_(self):\n",
|
||
" if self._png_data is None:\n",
|
||
" self._png_data = self._figure_data('png')\n",
|
||
" return self._png_data\n",
|
||
" \n",
|
||
" def _repr_latex_(self):\n",
|
||
" return r'$\\mathcal{N}(\\mu=%.2g, \\sigma=%.2g),\\ N=%d$' % (self.mean,\n",
|
||
" self.std, self.size)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Create an instance of the Gaussian distribution and return it to display the default representation:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOZJREFUeJzt3X+0ZWV93/H3xxnAVIlAGJCIOpiFFgxhMLMIDUlKxBB+\nuAQbtRiXmRaSadrQ6lrtSsayklJjW0ybaNommolQJ1k0QBWEBRidotaVtRLMID+EAPIjoyKEGRUQ\niDEi3/6x99Xj5dx7z73nnPtjnvdrrbPu2fvZe5/vPGfP5+zz7H33TVUhSdq3PWelC5AkTZ9hL0kN\nMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7keTMJI8kuTjJf0ny9pWuabVJ8pkkr1zpOqSl\nMuwbkuTHkuw3a95zgFOAXwK+CvwC8AdTruOAJJck+UKSJ5LckuSMab7mCDVdkGRXkm8m+eCQRf4b\n8M4lbvvgJJXkz2fN/4Mk71nKNge2MW/dSQ5JcnWSp/r+/vlR2kZp19pi2LflPODsWfNOBq6qqmv7\n6Ruq6htTrmM98CXgHwMvAH4duDLJxim/7nweAt4FXDpH+7XATyc5Ygnb3gT8DXDsrPU3AbcuYXuD\nFqr794C/Bw4H3gK8b+Abynxto7RrDTHs23ICsHXWvJOAm/rnZwD/b7AxyYVJ3jcwfXCSbyV57lKL\nqKqnquqiqtpdVc9U1XXAXwM/utC6SfZL8p+S7O7rqP5x21Lr6Wu6qqo+QvftZlj73wE3A6ctYfOb\ngF3ATuB1AEnWAccBtyyp4O/WNWfdSZ4H/Bzw61X1ZFX9Gd2H1lvna1to3XHq1cox7BuRZD2wFzg1\nycsHmtbXd++Gdxxwz6xVj+N7jz43Aff04Te4/euSPDbH47oFajsceDlw5wj/lHcBpwI/CRwE3Ahc\nDbx+UvXM4y7g+CWsdwJdH34EOKef9w+Bdf02p1X3y4FvV9XnB+bdBrxygbaF1tUatH6lC9Cy2QT8\nL2B/4G3AryQ5lu8Nm4OAJ2atdxwwOK68ie4//feoqtcupaj+HMJlwI6qunuBZQ8E/g3wI1X1pX7e\nh4F/WlUPTKKeBTwBLHUY5xrgE8D7+3/HJuCOqvrW4IITrvv5wOOz5j0OHLhA20Lrag3yyL4dp9Ad\nBf82cF6Sl9ANSewcWOZRBv4zJ9kf+CHgcwPLHM/448wz238O8Md048IXjLDKTwEPVNW9A/MOphsP\nXw4HAo8tZoUkBwDHALdW1aPAZ+iGy2aO9qfpSeD7Z837froPrfnaFlpXa5Bh347DqurRqvpTujH6\n3wWeX1VPDSxzO93X9xnHAl+uqr8FSBK6D41nHdkn+WiSJ+d4fHTI8gEuoTv593Ozj3DnsIHuA2lw\nG68HnjW8sdh6RnQMQ/7tC/hh4BvAzDePmaGcExgyXj/huj8PrE9y9MC84+mGy+ZrW2hdrUEO4+zD\nkvwE3TDM14FPDzT9C7rQ+visVW6gu0Lmsn76OOCwJD9Ed9XHhcBLgd2zX6uqFnvp5PvowvM1w67+\nmbmMsKr+2cDsO4BXJdlEd27hPwAFXDFuPf05jfV04+jr+hPQT1fV0337AXQnkLfMU98wJwC3DZwX\nuYbuEs5n+vqnVndVPZXkKuCdSX6RbujobODH52vr65i3XWtQVfnYRx90V1N8A3jvkLZfBV48a96h\nwIPA9/XTvwV8iO4o78vAvwbupxtfH6eul9KF9N/RDRfMPN4ysMyNwC8NWfdCug+eh4EPAodOqK8u\n6msafFw00P5GuktU561vyHb/J/A/Zs27lS7sD1yGug+h+zbxFPBF4OdHaRul3cfaeqR/U7WPSpJa\nxJuc5D8De6rqvf2wwQeq6sPTq3BoDfvTffP4kRpteGfqktwEnF9Vd6zG+qSFGPaaU5IHgdOq6q9W\nuhZJ4zHsNVSSg4FHgOd59CqtfYa9JDXASy8lqQHLeunloYceWhs3blzOl5SkNe/mm2/+SlVtGGcb\nyxr2GzduZNeuXcv5kpK05iX5wrjbcBhHkhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIaYNhLy2TjtuvZuO36sZeRlsKwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpASP9\npaoku4EngG8DT1fV5iSHAFcAG4HdwJuq6tHplClJGsdijux/uqo2VdXmfnobcGNVHQ3c2E9Lklah\ncYZxzgZ29M93AOeMX44kaRpGDfsCPp7k5iRb+3mHV9XDAP3Pw4atmGRrkl1Jdu3du3f8iiVJizbS\nmD1wclU9lOQwYGeSu0d9garaDmwH2Lx5cy2hRknSmEY6sq+qh/qfe4CrgROBR5IcAdD/3DOtIiVJ\n41kw7JM8L8mBM8+B04A7gGuBLf1iW4BrplWkJGk8owzjHA5cnWRm+f9dVX+a5C+BK5OcD3wReOP0\nypT2HYO3MN598VkrWIlasmDYV9UDwPFD5n8VOHUaRUmSJsvfoJWkBhj2ktQAw15aQZP4M4T+KUON\nwrCXpAYY9pLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBo97iWNISeQ28VgOP7CWpAYa9JDXAsJek\nBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7SWqA\n97OXVqGZe+Dvvvis75kenCcthkf2ktQAw16SGmDYS1IDRg77JOuS3JLkun76qCQ3Jbk3yRVJ9p9e\nmZKkcSzmyP5twF0D0+8G3lNVRwOPAudPsjBJ0uSMFPZJjgTOAj7QTwd4NfChfpEdwDnTKFCSNL5R\nj+zfC/wq8Ew//QPAY1X1dD/9IPCiCdcmSZqQBa+zT/JaYE9V3ZzklJnZQxatOdbfCmwFeMlLXrLE\nMqW1Y/Y18otZZ1rbl0Y5sj8ZeF2S3cDldMM37wUOSjLzYXEk8NCwlatqe1VtrqrNGzZsmEDJkqTF\nWjDsq+odVXVkVW0EzgU+UVVvAT4JvKFfbAtwzdSqlCSNZZzbJfwacHmSdwG3AJdMpiRJMxYzvCPN\nZ1FhX1WfAj7VP38AOHHyJUmSJs3foJWkBhj2ktQAb3EsTYnj7VpNPLKXpAYY9pLUAMNekhrgmL20\nRnlOQIvhkb0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7KV9xMZt13vtveZk2EtSAwx7\nSWqAYS9JDTDspSVwfFxrjWEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kN\nMOwlqQGGvSQ1YMGwT/LcJJ9JcluSO5P8x37+UUluSnJvkiuS7D/9ciVJSzHKkf03gVdX1fHAJuD0\nJCcB7wbeU1VHA48C50+vTEnSOBYM++o82U/u1z8KeDXwoX7+DuCcqVQoSRrbSGP2SdYluRXYA+wE\n7gceq6qn+0UeBF40nRIlSeMaKeyr6ttVtQk4EjgROGbYYsPWTbI1ya4ku/bu3bv0SiVJS7aoq3Gq\n6jHgU8BJwEFJ1vdNRwIPzbHO9qraXFWbN2zYME6tkqQlGuVqnA1JDuqffx/wGuAu4JPAG/rFtgDX\nTKtISdJ41i+8CEcAO5Kso/twuLKqrkvyV8DlSd4F3AJcMsU6pVXPP1Oo1WzBsK+q24EThsx/gG78\nXpK0yvkbtJLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMM\ne0lqgGEvSQ0w7CWpAYa9NIKN265fM/erX0u1avkY9pLUAMNekhpg2EtSA0b5G7SSeo6Fa63yyF6S\nGmDYS1IDDHtJaoBhLzXEa/DbZdhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktSABe+Nk+TF\nwB8BLwSeAbZX1e8mOQS4AtgI7AbeVFWPTq9UafVZK9esr5U6NT2jHNk/DfzbqjoGOAn4lSTHAtuA\nG6vqaODGflqStAotGPZV9XBVfbZ//gRwF/Ai4GxgR7/YDuCcaRUpSRrPosbsk2wETgBuAg6vqoeh\n+0AADpt0cZKkyRg57JM8H/gw8Paq+voi1tuaZFeSXXv37l1KjZKkMY0U9kn2owv6y6rqqn72I0mO\n6NuPAPYMW7eqtlfV5qravGHDhknULElapAXDPkmAS4C7qup3BpquBbb0z7cA10y+PEnSJIzyZwlP\nBt4KfC7Jrf28fw9cDFyZ5Hzgi8Abp1OiJGlcC4Z9Vf0ZkDmaT51sOZKWw8x197svPmuFK9Fy8Tdo\nJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16S\nGmDYS1IDRrmfvaQ1aOY2xhJ4ZC9JTTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEv\nSQ0w7CWpAYa9JDXAe+NIvcF7yey++KxnzZPWMo/sJakBhr0kNcCwl6QGGPaS1IAFwz7JpUn2JLlj\nYN4hSXYmubf/efB0y5QkjWOUI/sPAqfPmrcNuLGqjgZu7KclSavUgmFfVZ8GvjZr9tnAjv75DuCc\nCdclSZqgpY7ZH15VDwP0Pw+ba8EkW5PsSrJr7969S3w5SdOwcdv1c/4uwXxtWnumfoK2qrZX1eaq\n2rxhw4Zpv5wkaYilhv0jSY4A6H/umVxJkqRJW2rYXwts6Z9vAa6ZTDmSpGkY5dLLPwH+HHhFkgeT\nnA9cDPxMknuBn+mnJUmr1II3QquqN8/RdOqEa5EkTYm/QStJDTDsJakB3s9eGqK168tn/r0z9/HX\nvscje0lqgGEvSQ0w7CXNy9sm7BsMe0lqgGEvSQ0w7CWpAV56qWZ5ueGzLWZs3v5bWzyyl6QGGPaS\n1ADDXpIa4Ji99kmDY88zY8peK66WeWQvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDvM5e\nzfP6e7XAI3tJaoBhL0kNMOwlqQGO2Wuf55j8ZM3Xn97jfvXyyF6SGmDYS1IDDHtJaoBj9lqTZo8N\nOy4/fUvpY8fwV4+xjuyTnJ7kniT3Jdk2qaIkSZO15LBPsg74PeAM4FjgzUmOnVRhkqTJGefI/kTg\nvqp6oKr+HrgcOHsyZUmSJilVtbQVkzcAp1fVL/bTbwV+rKoumLXcVmBrP/nDwB1LL3fZHAp8ZaWL\nGMFaqHMt1AjWOWnWOVmvqKoDx9nAOCdoM2Tesz45qmo7sB0gya6q2jzGay4L65yctVAjWOekWedk\nJdk17jbGGcZ5EHjxwPSRwEPjlSNJmoZxwv4vgaOTHJVkf+Bc4NrJlCVJmqQlD+NU1dNJLgA+BqwD\nLq2qOxdYbftSX2+ZWefkrIUawTonzTona+w6l3yCVpK0dni7BElqgGEvSQ2YeNgneWOSO5M8k2Tz\nrLZ39LdWuCfJz86x/lFJbkpyb5Ir+pO/U9W/zq39Y3eSW+dYbneSz/XLjX0p1BLqvCjJlwdqPXOO\n5VbsNhZJ/muSu5PcnuTqJAfNsdyK9OVCfZPkgH5/uK/fDzcuV20DNbw4ySeT3NX/X3rbkGVOSfL4\nwL7wG8tdZ1/HvO9jOv+978/bk7xqBWp8xUA/3Zrk60nePmuZFenPJJcm2ZPkjoF5hyTZ2WfgziQH\nz7Huln6Ze5NsWfDFqmqiD+AY4BXAp4DNA/OPBW4DDgCOAu4H1g1Z/0rg3P75+4F/OekaF6j/t4Hf\nmKNtN3DoctYz6/UvAv7dAsus6/v2ZcD+fZ8fu4w1ngas75+/G3j3aunLUfoG+FfA+/vn5wJXrMD7\nfATwqv75gcDnh9R5CnDdcte22PcROBP4KN3v5ZwE3LTC9a4D/gZ46WroT+CngFcBdwzM+y1gW/98\n27D/Q8AhwAP9z4P75wfP91oTP7Kvqruq6p4hTWcDl1fVN6vqr4H76G658B1JArwa+FA/awdwzqRr\nnEv/+m8C/mS5XnMKVvQ2FlX18ap6up/8C7rfv1gtRumbs+n2O+j2w1P7/WLZVNXDVfXZ/vkTwF3A\ni5azhgk6G/ij6vwFcFCSI1awnlOB+6vqCytYw3dU1aeBr82aPbgPzpWBPwvsrKqvVdWjwE7g9Ple\naznH7F8EfGlg+kGevQP/APDYQFgMW2aafhJ4pKrunaO9gI8nubm/DcRKuKD/OnzpHF/vRunn5XIe\n3VHdMCvRl6P0zXeW6ffDx+n2yxXRDyOdANw0pPkfJbktyUeTvHJZC/uuhd7H1bQ/Qvdtba6DudXQ\nnwCHV9XD0H3wA4cNWWbR/bqk6+yT/F/ghUOaLqyqa+Zabci82dd9jnQLhqUYseY3M/9R/clV9VCS\nw4CdSe7uP5knZr46gfcBv0nXJ79JN+R03uxNDFl3otfXjtKXSS4EngYum2MzU+/LIVZ0H1ysJM8H\nPgy8vaq+Pqv5s3RDEU/2524+Ahy93DWy8Pu4mvpzf+B1wDuGNK+W/hzVovt1SWFfVa9Zwmqj3F7h\nK3Rf89b3R1UTuwXDQjUnWQ/8E+BH59nGQ/3PPUmuphsWmGhAjdq3Sf4QuG5I09RvYzFCX24BXguc\nWv0A45BtTL0vhxilb2aWebDfJ17As79mT12S/eiC/rKqump2+2D4V9UNSX4/yaFVtaw39RrhfVxN\nt1U5A/hsVT0yu2G19GfvkSRHVNXD/ZDXniHLPEh3nmHGkXTnSee0nMM41wLn9lc7HEX3qfmZwQX6\nYPgk8IZ+1hZgrm8Kk/Ya4O6qenBYY5LnJTlw5jndichlvYPnrLHO18/x+it6G4skpwO/Bryuqv52\njmVWqi9H6Ztr6fY76PbDT8z1gTUt/TmCS4C7qup35ljmhTPnEpKcSPd/+avLV+XI7+O1wC/0V+Wc\nBDw+M0SxAub85r4a+nPA4D44VwZ+DDgtycH9cO5p/by5TeHs8uvpPnW+CTwCfGyg7UK6qyHuAc4Y\nmH8D8IP985fRfQjcB/wf4IBJ1zhH3R8EfnnWvB8Ebhio67b+cSfdkMVyn7n/Y+BzwO39DnHE7Dr7\n6TPpruC4f7nr7N+3LwG39o/3z65xJftyWN8A76T7cAJ4br/f3dfvhy9bgff5J+i+kt8+0I9nAr88\ns48CF/R9dxvdifAfX4E6h76Ps+oM3R85ur/fdzcvd519Hf+ALrxfMDBvxfuT7sPnYeBbfW6eT3eO\n6Ebg3v7nIf2ym4EPDKx7Xr+f3gf884Vey9slSFID/A1aSWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIa8P8BEb7Ae9JKdQAAAAAASUVORK5CYII=\n",
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=2, \\sigma=1),\\ N=1000$"
|
||
],
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x116fe76d8>"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"x = Gaussian(2.0, 1.0)\n",
|
||
"x"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"You can also pass the object to the `display` function to display the default representation:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOZJREFUeJzt3X+0ZWV93/H3xxnAVIlAGJCIOpiFFgxhMLMIDUlKxBB+\nuAQbtRiXmRaSadrQ6lrtSsayklJjW0ybaNommolQJ1k0QBWEBRidotaVtRLMID+EAPIjoyKEGRUQ\niDEi3/6x99Xj5dx7z73nnPtjnvdrrbPu2fvZe5/vPGfP5+zz7H33TVUhSdq3PWelC5AkTZ9hL0kN\nMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7keTMJI8kuTjJf0ny9pWuabVJ8pkkr1zpOqSl\nMuwbkuTHkuw3a95zgFOAXwK+CvwC8AdTruOAJJck+UKSJ5LckuSMab7mCDVdkGRXkm8m+eCQRf4b\n8M4lbvvgJJXkz2fN/4Mk71nKNge2MW/dSQ5JcnWSp/r+/vlR2kZp19pi2LflPODsWfNOBq6qqmv7\n6Ruq6htTrmM98CXgHwMvAH4duDLJxim/7nweAt4FXDpH+7XATyc5Ygnb3gT8DXDsrPU3AbcuYXuD\nFqr794C/Bw4H3gK8b+Abynxto7RrDTHs23ICsHXWvJOAm/rnZwD/b7AxyYVJ3jcwfXCSbyV57lKL\nqKqnquqiqtpdVc9U1XXAXwM/utC6SfZL8p+S7O7rqP5x21Lr6Wu6qqo+QvftZlj73wE3A6ctYfOb\ngF3ATuB1AEnWAccBtyyp4O/WNWfdSZ4H/Bzw61X1ZFX9Gd2H1lvna1to3XHq1cox7BuRZD2wFzg1\nycsHmtbXd++Gdxxwz6xVj+N7jz43Aff04Te4/euSPDbH47oFajsceDlw5wj/lHcBpwI/CRwE3Ahc\nDbx+UvXM4y7g+CWsdwJdH34EOKef9w+Bdf02p1X3y4FvV9XnB+bdBrxygbaF1tUatH6lC9Cy2QT8\nL2B/4G3AryQ5lu8Nm4OAJ2atdxwwOK68ie4//feoqtcupaj+HMJlwI6qunuBZQ8E/g3wI1X1pX7e\nh4F/WlUPTKKeBTwBLHUY5xrgE8D7+3/HJuCOqvrW4IITrvv5wOOz5j0OHLhA20Lrag3yyL4dp9Ad\nBf82cF6Sl9ANSewcWOZRBv4zJ9kf+CHgcwPLHM/448wz238O8Md048IXjLDKTwEPVNW9A/MOphsP\nXw4HAo8tZoUkBwDHALdW1aPAZ+iGy2aO9qfpSeD7Z837froPrfnaFlpXa5Bh347DqurRqvpTujH6\n3wWeX1VPDSxzO93X9xnHAl+uqr8FSBK6D41nHdkn+WiSJ+d4fHTI8gEuoTv593Ozj3DnsIHuA2lw\nG68HnjW8sdh6RnQMQ/7tC/hh4BvAzDePmaGcExgyXj/huj8PrE9y9MC84+mGy+ZrW2hdrUEO4+zD\nkvwE3TDM14FPDzT9C7rQ+visVW6gu0Lmsn76OOCwJD9Ed9XHhcBLgd2zX6uqFnvp5PvowvM1w67+\nmbmMsKr+2cDsO4BXJdlEd27hPwAFXDFuPf05jfV04+jr+hPQT1fV0337AXQnkLfMU98wJwC3DZwX\nuYbuEs5n+vqnVndVPZXkKuCdSX6RbujobODH52vr65i3XWtQVfnYRx90V1N8A3jvkLZfBV48a96h\nwIPA9/XTvwV8iO4o78vAvwbupxtfH6eul9KF9N/RDRfMPN4ysMyNwC8NWfdCug+eh4EPAodOqK8u\n6msafFw00P5GuktU561vyHb/J/A/Zs27lS7sD1yGug+h+zbxFPBF4OdHaRul3cfaeqR/U7WPSpJa\nxJuc5D8De6rqvf2wwQeq6sPTq3BoDfvTffP4kRpteGfqktwEnF9Vd6zG+qSFGPaaU5IHgdOq6q9W\nuhZJ4zHsNVSSg4FHgOd59CqtfYa9JDXASy8lqQHLeunloYceWhs3blzOl5SkNe/mm2/+SlVtGGcb\nyxr2GzduZNeuXcv5kpK05iX5wrjbcBhHkhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIaYNhLy2TjtuvZuO36sZeRlsKwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpASP9\npaoku4EngG8DT1fV5iSHAFcAG4HdwJuq6tHplClJGsdijux/uqo2VdXmfnobcGNVHQ3c2E9Lklah\ncYZxzgZ29M93AOeMX44kaRpGDfsCPp7k5iRb+3mHV9XDAP3Pw4atmGRrkl1Jdu3du3f8iiVJizbS\nmD1wclU9lOQwYGeSu0d9garaDmwH2Lx5cy2hRknSmEY6sq+qh/qfe4CrgROBR5IcAdD/3DOtIiVJ\n41kw7JM8L8mBM8+B04A7gGuBLf1iW4BrplWkJGk8owzjHA5cnWRm+f9dVX+a5C+BK5OcD3wReOP0\nypT2HYO3MN598VkrWIlasmDYV9UDwPFD5n8VOHUaRUmSJsvfoJWkBhj2ktQAw15aQZP4M4T+KUON\nwrCXpAYY9pLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBo97iWNISeQ28VgOP7CWpAYa9JDXAsJek\nBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7SWqA\n97OXVqGZe+Dvvvis75kenCcthkf2ktQAw16SGmDYS1IDRg77JOuS3JLkun76qCQ3Jbk3yRVJ9p9e\nmZKkcSzmyP5twF0D0+8G3lNVRwOPAudPsjBJ0uSMFPZJjgTOAj7QTwd4NfChfpEdwDnTKFCSNL5R\nj+zfC/wq8Ew//QPAY1X1dD/9IPCiCdcmSZqQBa+zT/JaYE9V3ZzklJnZQxatOdbfCmwFeMlLXrLE\nMqW1Y/Y18otZZ1rbl0Y5sj8ZeF2S3cDldMM37wUOSjLzYXEk8NCwlatqe1VtrqrNGzZsmEDJkqTF\nWjDsq+odVXVkVW0EzgU+UVVvAT4JvKFfbAtwzdSqlCSNZZzbJfwacHmSdwG3AJdMpiRJMxYzvCPN\nZ1FhX1WfAj7VP38AOHHyJUmSJs3foJWkBhj2ktQAb3EsTYnj7VpNPLKXpAYY9pLUAMNekhrgmL20\nRnlOQIvhkb0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7KV9xMZt13vtveZk2EtSAwx7\nSWqAYS9JDTDspSVwfFxrjWEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kN\nMOwlqQGGvSQ1YMGwT/LcJJ9JcluSO5P8x37+UUluSnJvkiuS7D/9ciVJSzHKkf03gVdX1fHAJuD0\nJCcB7wbeU1VHA48C50+vTEnSOBYM++o82U/u1z8KeDXwoX7+DuCcqVQoSRrbSGP2SdYluRXYA+wE\n7gceq6qn+0UeBF40nRIlSeMaKeyr6ttVtQk4EjgROGbYYsPWTbI1ya4ku/bu3bv0SiVJS7aoq3Gq\n6jHgU8BJwEFJ1vdNRwIPzbHO9qraXFWbN2zYME6tkqQlGuVqnA1JDuqffx/wGuAu4JPAG/rFtgDX\nTKtISdJ41i+8CEcAO5Kso/twuLKqrkvyV8DlSd4F3AJcMsU6pVXPP1Oo1WzBsK+q24EThsx/gG78\nXpK0yvkbtJLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMM\ne0lqgGEvSQ0w7CWpAYa9NIKN265fM/erX0u1avkY9pLUAMNekhpg2EtSA0b5G7SSeo6Fa63yyF6S\nGmDYS1IDDHtJaoBhLzXEa/DbZdhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktSABe+Nk+TF\nwB8BLwSeAbZX1e8mOQS4AtgI7AbeVFWPTq9UafVZK9esr5U6NT2jHNk/DfzbqjoGOAn4lSTHAtuA\nG6vqaODGflqStAotGPZV9XBVfbZ//gRwF/Ai4GxgR7/YDuCcaRUpSRrPosbsk2wETgBuAg6vqoeh\n+0AADpt0cZKkyRg57JM8H/gw8Paq+voi1tuaZFeSXXv37l1KjZKkMY0U9kn2owv6y6rqqn72I0mO\n6NuPAPYMW7eqtlfV5qravGHDhknULElapAXDPkmAS4C7qup3BpquBbb0z7cA10y+PEnSJIzyZwlP\nBt4KfC7Jrf28fw9cDFyZ5Hzgi8Abp1OiJGlcC4Z9Vf0ZkDmaT51sOZKWw8x197svPmuFK9Fy8Tdo\nJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16S\nGmDYS1IDRrmfvaQ1aOY2xhJ4ZC9JTTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEv\nSQ0w7CWpAYa9JDXAe+NIvcF7yey++KxnzZPWMo/sJakBhr0kNcCwl6QGGPaS1IAFwz7JpUn2JLlj\nYN4hSXYmubf/efB0y5QkjWOUI/sPAqfPmrcNuLGqjgZu7KclSavUgmFfVZ8GvjZr9tnAjv75DuCc\nCdclSZqgpY7ZH15VDwP0Pw+ba8EkW5PsSrJr7969S3w5SdOwcdv1c/4uwXxtWnumfoK2qrZX1eaq\n2rxhw4Zpv5wkaYilhv0jSY4A6H/umVxJkqRJW2rYXwts6Z9vAa6ZTDmSpGkY5dLLPwH+HHhFkgeT\nnA9cDPxMknuBn+mnJUmr1II3QquqN8/RdOqEa5EkTYm/QStJDTDsJakB3s9eGqK168tn/r0z9/HX\nvscje0lqgGEvSQ0w7CXNy9sm7BsMe0lqgGEvSQ0w7CWpAV56qWZ5ueGzLWZs3v5bWzyyl6QGGPaS\n1ADDXpIa4Ji99kmDY88zY8peK66WeWQvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDvM5e\nzfP6e7XAI3tJaoBhL0kNMOwlqQGO2Wuf55j8ZM3Xn97jfvXyyF6SGmDYS1IDDHtJaoBj9lqTZo8N\nOy4/fUvpY8fwV4+xjuyTnJ7kniT3Jdk2qaIkSZO15LBPsg74PeAM4FjgzUmOnVRhkqTJGefI/kTg\nvqp6oKr+HrgcOHsyZUmSJilVtbQVkzcAp1fVL/bTbwV+rKoumLXcVmBrP/nDwB1LL3fZHAp8ZaWL\nGMFaqHMt1AjWOWnWOVmvqKoDx9nAOCdoM2Tesz45qmo7sB0gya6q2jzGay4L65yctVAjWOekWedk\nJdk17jbGGcZ5EHjxwPSRwEPjlSNJmoZxwv4vgaOTHJVkf+Bc4NrJlCVJmqQlD+NU1dNJLgA+BqwD\nLq2qOxdYbftSX2+ZWefkrIUawTonzTona+w6l3yCVpK0dni7BElqgGEvSQ2YeNgneWOSO5M8k2Tz\nrLZ39LdWuCfJz86x/lFJbkpyb5Ir+pO/U9W/zq39Y3eSW+dYbneSz/XLjX0p1BLqvCjJlwdqPXOO\n5VbsNhZJ/muSu5PcnuTqJAfNsdyK9OVCfZPkgH5/uK/fDzcuV20DNbw4ySeT3NX/X3rbkGVOSfL4\nwL7wG8tdZ1/HvO9jOv+978/bk7xqBWp8xUA/3Zrk60nePmuZFenPJJcm2ZPkjoF5hyTZ2WfgziQH\nz7Huln6Ze5NsWfDFqmqiD+AY4BXAp4DNA/OPBW4DDgCOAu4H1g1Z/0rg3P75+4F/OekaF6j/t4Hf\nmKNtN3DoctYz6/UvAv7dAsus6/v2ZcD+fZ8fu4w1ngas75+/G3j3aunLUfoG+FfA+/vn5wJXrMD7\nfATwqv75gcDnh9R5CnDdcte22PcROBP4KN3v5ZwE3LTC9a4D/gZ46WroT+CngFcBdwzM+y1gW/98\n27D/Q8AhwAP9z4P75wfP91oTP7Kvqruq6p4hTWcDl1fVN6vqr4H76G658B1JArwa+FA/awdwzqRr\nnEv/+m8C/mS5XnMKVvQ2FlX18ap6up/8C7rfv1gtRumbs+n2O+j2w1P7/WLZVNXDVfXZ/vkTwF3A\ni5azhgk6G/ij6vwFcFCSI1awnlOB+6vqCytYw3dU1aeBr82aPbgPzpWBPwvsrKqvVdWjwE7g9Ple\naznH7F8EfGlg+kGevQP/APDYQFgMW2aafhJ4pKrunaO9gI8nubm/DcRKuKD/OnzpHF/vRunn5XIe\n3VHdMCvRl6P0zXeW6ffDx+n2yxXRDyOdANw0pPkfJbktyUeTvHJZC/uuhd7H1bQ/Qvdtba6DudXQ\nnwCHV9XD0H3wA4cNWWbR/bqk6+yT/F/ghUOaLqyqa+Zabci82dd9jnQLhqUYseY3M/9R/clV9VCS\nw4CdSe7uP5knZr46gfcBv0nXJ79JN+R03uxNDFl3otfXjtKXSS4EngYum2MzU+/LIVZ0H1ysJM8H\nPgy8vaq+Pqv5s3RDEU/2524+Ahy93DWy8Pu4mvpzf+B1wDuGNK+W/hzVovt1SWFfVa9Zwmqj3F7h\nK3Rf89b3R1UTuwXDQjUnWQ/8E+BH59nGQ/3PPUmuphsWmGhAjdq3Sf4QuG5I09RvYzFCX24BXguc\nWv0A45BtTL0vhxilb2aWebDfJ17As79mT12S/eiC/rKqump2+2D4V9UNSX4/yaFVtaw39RrhfVxN\nt1U5A/hsVT0yu2G19GfvkSRHVNXD/ZDXniHLPEh3nmHGkXTnSee0nMM41wLn9lc7HEX3qfmZwQX6\nYPgk8IZ+1hZgrm8Kk/Ya4O6qenBYY5LnJTlw5jndichlvYPnrLHO18/x+it6G4skpwO/Bryuqv52\njmVWqi9H6Ztr6fY76PbDT8z1gTUt/TmCS4C7qup35ljmhTPnEpKcSPd/+avLV+XI7+O1wC/0V+Wc\nBDw+M0SxAub85r4a+nPA4D44VwZ+DDgtycH9cO5p/by5TeHs8uvpPnW+CTwCfGyg7UK6qyHuAc4Y\nmH8D8IP985fRfQjcB/wf4IBJ1zhH3R8EfnnWvB8Ebhio67b+cSfdkMVyn7n/Y+BzwO39DnHE7Dr7\n6TPpruC4f7nr7N+3LwG39o/3z65xJftyWN8A76T7cAJ4br/f3dfvhy9bgff5J+i+kt8+0I9nAr88\ns48CF/R9dxvdifAfX4E6h76Ps+oM3R85ur/fdzcvd519Hf+ALrxfMDBvxfuT7sPnYeBbfW6eT3eO\n6Ebg3v7nIf2ym4EPDKx7Xr+f3gf884Vey9slSFID/A1aSWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIa8P8BEb7Ae9JKdQAAAAAASUVORK5CYII=\n",
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=2, \\sigma=1),\\ N=1000$"
|
||
],
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x116fe76d8>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display(x)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Use `display_png` to view the PNG representation:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOZJREFUeJzt3X+0ZWV93/H3xxnAVIlAGJCIOpiFFgxhMLMIDUlKxBB+\nuAQbtRiXmRaSadrQ6lrtSsayklJjW0ybaNommolQJ1k0QBWEBRidotaVtRLMID+EAPIjoyKEGRUQ\niDEi3/6x99Xj5dx7z73nnPtjnvdrrbPu2fvZe5/vPGfP5+zz7H33TVUhSdq3PWelC5AkTZ9hL0kN\nMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7keTMJI8kuTjJf0ny9pWuabVJ8pkkr1zpOqSl\nMuwbkuTHkuw3a95zgFOAXwK+CvwC8AdTruOAJJck+UKSJ5LckuSMab7mCDVdkGRXkm8m+eCQRf4b\n8M4lbvvgJJXkz2fN/4Mk71nKNge2MW/dSQ5JcnWSp/r+/vlR2kZp19pi2LflPODsWfNOBq6qqmv7\n6Ruq6htTrmM98CXgHwMvAH4duDLJxim/7nweAt4FXDpH+7XATyc5Ygnb3gT8DXDsrPU3AbcuYXuD\nFqr794C/Bw4H3gK8b+Abynxto7RrDTHs23ICsHXWvJOAm/rnZwD/b7AxyYVJ3jcwfXCSbyV57lKL\nqKqnquqiqtpdVc9U1XXAXwM/utC6SfZL8p+S7O7rqP5x21Lr6Wu6qqo+QvftZlj73wE3A6ctYfOb\ngF3ATuB1AEnWAccBtyyp4O/WNWfdSZ4H/Bzw61X1ZFX9Gd2H1lvna1to3XHq1cox7BuRZD2wFzg1\nycsHmtbXd++Gdxxwz6xVj+N7jz43Aff04Te4/euSPDbH47oFajsceDlw5wj/lHcBpwI/CRwE3Ahc\nDbx+UvXM4y7g+CWsdwJdH34EOKef9w+Bdf02p1X3y4FvV9XnB+bdBrxygbaF1tUatH6lC9Cy2QT8\nL2B/4G3AryQ5lu8Nm4OAJ2atdxwwOK68ie4//feoqtcupaj+HMJlwI6qunuBZQ8E/g3wI1X1pX7e\nh4F/WlUPTKKeBTwBLHUY5xrgE8D7+3/HJuCOqvrW4IITrvv5wOOz5j0OHLhA20Lrag3yyL4dp9Ad\nBf82cF6Sl9ANSewcWOZRBv4zJ9kf+CHgcwPLHM/448wz238O8Md048IXjLDKTwEPVNW9A/MOphsP\nXw4HAo8tZoUkBwDHALdW1aPAZ+iGy2aO9qfpSeD7Z837froPrfnaFlpXa5Bh347DqurRqvpTujH6\n3wWeX1VPDSxzO93X9xnHAl+uqr8FSBK6D41nHdkn+WiSJ+d4fHTI8gEuoTv593Ozj3DnsIHuA2lw\nG68HnjW8sdh6RnQMQ/7tC/hh4BvAzDePmaGcExgyXj/huj8PrE9y9MC84+mGy+ZrW2hdrUEO4+zD\nkvwE3TDM14FPDzT9C7rQ+visVW6gu0Lmsn76OOCwJD9Ed9XHhcBLgd2zX6uqFnvp5PvowvM1w67+\nmbmMsKr+2cDsO4BXJdlEd27hPwAFXDFuPf05jfV04+jr+hPQT1fV0337AXQnkLfMU98wJwC3DZwX\nuYbuEs5n+vqnVndVPZXkKuCdSX6RbujobODH52vr65i3XWtQVfnYRx90V1N8A3jvkLZfBV48a96h\nwIPA9/XTvwV8iO4o78vAvwbupxtfH6eul9KF9N/RDRfMPN4ysMyNwC8NWfdCug+eh4EPAodOqK8u\n6msafFw00P5GuktU561vyHb/J/A/Zs27lS7sD1yGug+h+zbxFPBF4OdHaRul3cfaeqR/U7WPSpJa\nxJuc5D8De6rqvf2wwQeq6sPTq3BoDfvTffP4kRpteGfqktwEnF9Vd6zG+qSFGPaaU5IHgdOq6q9W\nuhZJ4zHsNVSSg4FHgOd59CqtfYa9JDXASy8lqQHLeunloYceWhs3blzOl5SkNe/mm2/+SlVtGGcb\nyxr2GzduZNeuXcv5kpK05iX5wrjbcBhHkhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIaYNhLy2TjtuvZuO36sZeRlsKwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpASP9\npaoku4EngG8DT1fV5iSHAFcAG4HdwJuq6tHplClJGsdijux/uqo2VdXmfnobcGNVHQ3c2E9Lklah\ncYZxzgZ29M93AOeMX44kaRpGDfsCPp7k5iRb+3mHV9XDAP3Pw4atmGRrkl1Jdu3du3f8iiVJizbS\nmD1wclU9lOQwYGeSu0d9garaDmwH2Lx5cy2hRknSmEY6sq+qh/qfe4CrgROBR5IcAdD/3DOtIiVJ\n41kw7JM8L8mBM8+B04A7gGuBLf1iW4BrplWkJGk8owzjHA5cnWRm+f9dVX+a5C+BK5OcD3wReOP0\nypT2HYO3MN598VkrWIlasmDYV9UDwPFD5n8VOHUaRUmSJsvfoJWkBhj2ktQAw15aQZP4M4T+KUON\nwrCXpAYY9pLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBo97iWNISeQ28VgOP7CWpAYa9JDXAsJek\nBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7SWqA\n97OXVqGZe+Dvvvis75kenCcthkf2ktQAw16SGmDYS1IDRg77JOuS3JLkun76qCQ3Jbk3yRVJ9p9e\nmZKkcSzmyP5twF0D0+8G3lNVRwOPAudPsjBJ0uSMFPZJjgTOAj7QTwd4NfChfpEdwDnTKFCSNL5R\nj+zfC/wq8Ew//QPAY1X1dD/9IPCiCdcmSZqQBa+zT/JaYE9V3ZzklJnZQxatOdbfCmwFeMlLXrLE\nMqW1Y/Y18otZZ1rbl0Y5sj8ZeF2S3cDldMM37wUOSjLzYXEk8NCwlatqe1VtrqrNGzZsmEDJkqTF\nWjDsq+odVXVkVW0EzgU+UVVvAT4JvKFfbAtwzdSqlCSNZZzbJfwacHmSdwG3AJdMpiRJMxYzvCPN\nZ1FhX1WfAj7VP38AOHHyJUmSJs3foJWkBhj2ktQAb3EsTYnj7VpNPLKXpAYY9pLUAMNekhrgmL20\nRnlOQIvhkb0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7KV9xMZt13vtveZk2EtSAwx7\nSWqAYS9JDTDspSVwfFxrjWEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kN\nMOwlqQGGvSQ1YMGwT/LcJJ9JcluSO5P8x37+UUluSnJvkiuS7D/9ciVJSzHKkf03gVdX1fHAJuD0\nJCcB7wbeU1VHA48C50+vTEnSOBYM++o82U/u1z8KeDXwoX7+DuCcqVQoSRrbSGP2SdYluRXYA+wE\n7gceq6qn+0UeBF40nRIlSeMaKeyr6ttVtQk4EjgROGbYYsPWTbI1ya4ku/bu3bv0SiVJS7aoq3Gq\n6jHgU8BJwEFJ1vdNRwIPzbHO9qraXFWbN2zYME6tkqQlGuVqnA1JDuqffx/wGuAu4JPAG/rFtgDX\nTKtISdJ41i+8CEcAO5Kso/twuLKqrkvyV8DlSd4F3AJcMsU6pVXPP1Oo1WzBsK+q24EThsx/gG78\nXpK0yvkbtJLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMM\ne0lqgGEvSQ0w7CWpAYa9NIKN265fM/erX0u1avkY9pLUAMNekhpg2EtSA0b5G7SSeo6Fa63yyF6S\nGmDYS1IDDHtJaoBhLzXEa/DbZdhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktSABe+Nk+TF\nwB8BLwSeAbZX1e8mOQS4AtgI7AbeVFWPTq9UafVZK9esr5U6NT2jHNk/DfzbqjoGOAn4lSTHAtuA\nG6vqaODGflqStAotGPZV9XBVfbZ//gRwF/Ai4GxgR7/YDuCcaRUpSRrPosbsk2wETgBuAg6vqoeh\n+0AADpt0cZKkyRg57JM8H/gw8Paq+voi1tuaZFeSXXv37l1KjZKkMY0U9kn2owv6y6rqqn72I0mO\n6NuPAPYMW7eqtlfV5qravGHDhknULElapAXDPkmAS4C7qup3BpquBbb0z7cA10y+PEnSJIzyZwlP\nBt4KfC7Jrf28fw9cDFyZ5Hzgi8Abp1OiJGlcC4Z9Vf0ZkDmaT51sOZKWw8x197svPmuFK9Fy8Tdo\nJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16S\nGmDYS1IDRrmfvaQ1aOY2xhJ4ZC9JTTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEv\nSQ0w7CWpAYa9JDXAe+NIvcF7yey++KxnzZPWMo/sJakBhr0kNcCwl6QGGPaS1IAFwz7JpUn2JLlj\nYN4hSXYmubf/efB0y5QkjWOUI/sPAqfPmrcNuLGqjgZu7KclSavUgmFfVZ8GvjZr9tnAjv75DuCc\nCdclSZqgpY7ZH15VDwP0Pw+ba8EkW5PsSrJr7969S3w5SdOwcdv1c/4uwXxtWnumfoK2qrZX1eaq\n2rxhw4Zpv5wkaYilhv0jSY4A6H/umVxJkqRJW2rYXwts6Z9vAa6ZTDmSpGkY5dLLPwH+HHhFkgeT\nnA9cDPxMknuBn+mnJUmr1II3QquqN8/RdOqEa5EkTYm/QStJDTDsJakB3s9eGqK168tn/r0z9/HX\nvscje0lqgGEvSQ0w7CXNy9sm7BsMe0lqgGEvSQ0w7CWpAV56qWZ5ueGzLWZs3v5bWzyyl6QGGPaS\n1ADDXpIa4Ji99kmDY88zY8peK66WeWQvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDvM5e\nzfP6e7XAI3tJaoBhL0kNMOwlqQGO2Wuf55j8ZM3Xn97jfvXyyF6SGmDYS1IDDHtJaoBj9lqTZo8N\nOy4/fUvpY8fwV4+xjuyTnJ7kniT3Jdk2qaIkSZO15LBPsg74PeAM4FjgzUmOnVRhkqTJGefI/kTg\nvqp6oKr+HrgcOHsyZUmSJilVtbQVkzcAp1fVL/bTbwV+rKoumLXcVmBrP/nDwB1LL3fZHAp8ZaWL\nGMFaqHMt1AjWOWnWOVmvqKoDx9nAOCdoM2Tesz45qmo7sB0gya6q2jzGay4L65yctVAjWOekWedk\nJdk17jbGGcZ5EHjxwPSRwEPjlSNJmoZxwv4vgaOTHJVkf+Bc4NrJlCVJmqQlD+NU1dNJLgA+BqwD\nLq2qOxdYbftSX2+ZWefkrIUawTonzTona+w6l3yCVpK0dni7BElqgGEvSQ2YeNgneWOSO5M8k2Tz\nrLZ39LdWuCfJz86x/lFJbkpyb5Ir+pO/U9W/zq39Y3eSW+dYbneSz/XLjX0p1BLqvCjJlwdqPXOO\n5VbsNhZJ/muSu5PcnuTqJAfNsdyK9OVCfZPkgH5/uK/fDzcuV20DNbw4ySeT3NX/X3rbkGVOSfL4\nwL7wG8tdZ1/HvO9jOv+978/bk7xqBWp8xUA/3Zrk60nePmuZFenPJJcm2ZPkjoF5hyTZ2WfgziQH\nz7Huln6Ze5NsWfDFqmqiD+AY4BXAp4DNA/OPBW4DDgCOAu4H1g1Z/0rg3P75+4F/OekaF6j/t4Hf\nmKNtN3DoctYz6/UvAv7dAsus6/v2ZcD+fZ8fu4w1ngas75+/G3j3aunLUfoG+FfA+/vn5wJXrMD7\nfATwqv75gcDnh9R5CnDdcte22PcROBP4KN3v5ZwE3LTC9a4D/gZ46WroT+CngFcBdwzM+y1gW/98\n27D/Q8AhwAP9z4P75wfP91oTP7Kvqruq6p4hTWcDl1fVN6vqr4H76G658B1JArwa+FA/awdwzqRr\nnEv/+m8C/mS5XnMKVvQ2FlX18ap6up/8C7rfv1gtRumbs+n2O+j2w1P7/WLZVNXDVfXZ/vkTwF3A\ni5azhgk6G/ij6vwFcFCSI1awnlOB+6vqCytYw3dU1aeBr82aPbgPzpWBPwvsrKqvVdWjwE7g9Ple\naznH7F8EfGlg+kGevQP/APDYQFgMW2aafhJ4pKrunaO9gI8nubm/DcRKuKD/OnzpHF/vRunn5XIe\n3VHdMCvRl6P0zXeW6ffDx+n2yxXRDyOdANw0pPkfJbktyUeTvHJZC/uuhd7H1bQ/Qvdtba6DudXQ\nnwCHV9XD0H3wA4cNWWbR/bqk6+yT/F/ghUOaLqyqa+Zabci82dd9jnQLhqUYseY3M/9R/clV9VCS\nw4CdSe7uP5knZr46gfcBv0nXJ79JN+R03uxNDFl3otfXjtKXSS4EngYum2MzU+/LIVZ0H1ysJM8H\nPgy8vaq+Pqv5s3RDEU/2524+Ahy93DWy8Pu4mvpzf+B1wDuGNK+W/hzVovt1SWFfVa9Zwmqj3F7h\nK3Rf89b3R1UTuwXDQjUnWQ/8E+BH59nGQ/3PPUmuphsWmGhAjdq3Sf4QuG5I09RvYzFCX24BXguc\nWv0A45BtTL0vhxilb2aWebDfJ17As79mT12S/eiC/rKqump2+2D4V9UNSX4/yaFVtaw39RrhfVxN\nt1U5A/hsVT0yu2G19GfvkSRHVNXD/ZDXniHLPEh3nmHGkXTnSee0nMM41wLn9lc7HEX3qfmZwQX6\nYPgk8IZ+1hZgrm8Kk/Ya4O6qenBYY5LnJTlw5jndichlvYPnrLHO18/x+it6G4skpwO/Bryuqv52\njmVWqi9H6Ztr6fY76PbDT8z1gTUt/TmCS4C7qup35ljmhTPnEpKcSPd/+avLV+XI7+O1wC/0V+Wc\nBDw+M0SxAub85r4a+nPA4D44VwZ+DDgtycH9cO5p/by5TeHs8uvpPnW+CTwCfGyg7UK6qyHuAc4Y\nmH8D8IP985fRfQjcB/wf4IBJ1zhH3R8EfnnWvB8Ebhio67b+cSfdkMVyn7n/Y+BzwO39DnHE7Dr7\n6TPpruC4f7nr7N+3LwG39o/3z65xJftyWN8A76T7cAJ4br/f3dfvhy9bgff5J+i+kt8+0I9nAr88\ns48CF/R9dxvdifAfX4E6h76Ps+oM3R85ur/fdzcvd519Hf+ALrxfMDBvxfuT7sPnYeBbfW6eT3eO\n6Ebg3v7nIf2ym4EPDKx7Xr+f3gf884Vey9slSFID/A1aSWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIa8P8BEb7Ae9JKdQAAAAAASUVORK5CYII=\n"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display_png(x)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<div class=\"alert alert-success\">\n",
|
||
"It is important to note a subtle different between <code>display</code> and <code>display_png</code>. The former computes <em>all</em> representations of the object, and lets the notebook UI decide which to display. The later only computes the PNG representation.\n",
|
||
"</div>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Create a new Gaussian with different parameters:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFmZJREFUeJzt3XuwZWV55/HvLzSgIkojDSIwNqbQEW/onCIkGoexHeRW\nglEyGEe7hAmjo4kmMxMw1MRUEmcwNzUzCaQjRrQokUEJjNEog1rOVA2YBrkKSIsIDS0cI+AtXojP\n/LFX63azz6X35exzeL+fql1n73e9a62n37V6P/t9373WTlUhSWrXz8w6AEnSbJkIJKlxJgJJapyJ\nQJIaZyKQpMaZCCSpcSYCSWqciUCSGmci0IKSHJ/kviTnJPlvSd4665hWmySfT/KsWcchjcNEIJL8\nXJLdB8p+Bjga+FXgH4DXAX+5ArHsm+TSJN9J8tUkvzLtfS4Sy55Jzu/i+FaSLyQ5bqDaHwO/N+L2\n1yepJP9voPwvk7xrmnEv1s5LHYPVdIw0GSYCAZwGnDRQ9kLgo1V1eff641X1jysQy58DPwAOAF4D\nnDvDT9zrgLuBfwk8EfgvwMVJNvbVuRz4V0kOHGH7RwBfAw4fWP8I4LpRAu4sJ+7F2nmpY7CajpEm\noap8NP4APg98aqDsPwPpnn8a+LcDy88Gzu17vR74IfCYMeLYi94bzNP7yj4InLOMdXcH3gHc2cVR\n3eP6CbfVDcArB8quADaPsK3fAP4XcAnw77uy3YDvAs+dVtyLtfNSx2CcY+Rj9T7sETQuyTpgHtiU\n5Ol9i9ZV978ceA5w28Cqz+GnP7UeAdxWVd8b2P7Hkjy4wONjA9t8OvBPVfWlvrLrgeV82vwDYBPw\ni8A+wJXApcArxoiHgXUP6GK8eWDRLcDzlhHjoOfTa8O/AU7uyv45vWRwyxTjXqydlzoG4xwjrVLr\nZh2AZu4I4K+BPYC3AG9Kcjg//Ua0D/CtgfWeA/SPYx9B7w3hp1TVibsQy+OBhwbKHgL2XmylJHsD\nv07vU/TdXdlHgH9TVXeMEU//PnYHLgQuqKpbBxZ/Cxh1aOgyej2u87p/xxHATVX1w/6KE457sXZe\n6hiMdIy0utkj0NH0Pj3/CXBakn8GHENvuGOnB+j7j55kD+BngRv76jyP8ca1Ab4NPGGg7Ak8MgkN\nejFwR1Xd3le2nt74+9i6ifMP0hsSefOQKnsDD+7iNvcEnglcV1UP0BueO46f9BLGtkjci7XzUsdg\n1GOkVcxEoP2r6oGq+jvgauA9wOOr6jt9dW6gNySw0+HAPVX1XYAkoZdQHtEjSPKJJN9e4PGJgepf\nAtYlOayv7Hk8cihm0AZ6yWrnPkNvSOgRQya7GM/ObZ1Pb2L0lYOf1DvPHPZvX8KzgX8EdvZYdg4P\nPR/4wpTjXqydlzoGox4jrWaznqTwsfIP4EXAG+l94+PEvvJnAN8D3jhQ/zeBLX2vX0vvE+DPAo+l\nNz5f9E0gjhHbRcCH6E1KvpDesMOz+pa/H3j/wDpz9CZYj+jiOYfeJ+zdJxDPecBV9JLjsOV7At8A\nnrJQfAus9++A/9P3+qn0ehXfAF60AnEv2M7LOAaLLvex9h4zD8DHDA46vJLep9F3D1n2W8AhA2X7\nAduBx3av/5DeN12+BNwD/BrwZXrj0OPGti+9T8ffAe4CfmVg+ZXArw5Z72zgXmBH92a83wRieWqX\n4L5Hb0hk5+M1fXVOofc120XjG7Lt/wH894Gy64AfAXuvQNwLtvMyjsGiy32svcfOrweqMUlSu3Dw\nk/xX4P6qenc3FPHeqvrI9CIcGsMe9IZgnlvDh2hWXJKrgdOr6qbVGJ+0HCYC7bIk24FjquqLs45F\n0vhMBNolSdYD9wF7+alXenQwEUhS4/z6qCQ1blVcWbzffvvVxo0bZx2GJK0p11xzzderasO421kV\niWDjxo1s3bp11mFI0pqS5KuT2I5DQ5LUOBOBJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY0zEUhS\n40wEktS4VXFlsTRtG8/620eU3XnOCTOIRFp97BFIUuOWTARJ3pfk/iQ39ZX9UZJbk9yQ5NIk+/Qt\ne1uSbUluS/KyaQUuSZqM5fQI3g8cO1B2BfDsqnouvd+tfRtAksOBU4Fndev8RZLdJhatJGnilkwE\nVfU54BsDZZ+qqoe7l1cBB3fPTwIuqqrvV9VXgG3AkROMV5I0YZOYIzgN+ET3/CDg7r5l27uyR0hy\nRpKtSbbOz89PIAxJ0ijGSgRJzgYeBi7cWTSk2tDfwqyqLVU1V1VzGzaM/bsKkqQRjfz10SSbgROB\nTfWTHz7eDhzSV+1g4N7Rw5MkTdtIPYIkxwJnAi+vqu/2LbocODXJnkkOBQ4DPj9+mJKkaVmyR5Dk\nQ8DRwH5JtgNvp/ctoT2BK5IAXFVVb6iqm5NcDHyR3pDRm6rqn6YVvCRpfEsmgqp69ZDi8xep/w7g\nHeMEJUlaOV5ZLEmNMxFIUuNMBJLUOBOBJDXORCBJjTMRSFLj/GEarXn+6Iw0HnsEktQ4E4EkNc6h\nIanP4DCTQ0xqgT0CSWqciUCSGmcikKTGmQgkqXEmAklqnIlAkhpnIpCkxnkdgTQBXn+gtcwegSQ1\nzh6BmjXsZnVSi+wRSFLjTASS1DiHhqRd5JCSHm3sEUhS45ZMBEnel+T+JDf1le2b5Iokt3d/13fl\nSfJnSbYluSHJC6YZvCRpfMvpEbwfOHag7Czgyqo6DLiyew1wHHBY9zgDOHcyYUqSpmXJOYKq+lyS\njQPFJwFHd88vAD4LnNmVf6CqCrgqyT5JDqyqHZMKWFpJzgeoBaPOERyw8829+7t/V34QcHdfve1d\n2SMkOSPJ1iRb5+fnRwxDkjSuSU8WZ0hZDatYVVuqaq6q5jZs2DDhMCRJyzVqIrgvyYEA3d/7u/Lt\nwCF99Q4G7h09PEnStI2aCC4HNnfPNwOX9ZW/rvv20FHAQ84PSNLqtuRkcZIP0ZsY3i/JduDtwDnA\nxUlOB+4CTumqfxw4HtgGfBd4/RRiliRN0HK+NfTqBRZtGlK3gDeNG5QkaeV4ZbEkNc5EIEmNMxFI\nUuO8+6gelbwiWFo+ewSS1DgTgSQ1zkQgSY0zEUhS45wslqZg2GT1neecMINIpKXZI5CkxpkIJKlx\nDg1pTVnL1wc4XKTVyh6BJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY0zEUhS40wEktQ4E4EkNc5E\nIEmNMxFIUuNMBJLUOBOBJDVurESQ5DeS3JzkpiQfSvKYJIcmuTrJ7Uk+nGSPSQUrSZq8kRNBkoOA\nXwfmqurZwG7AqcA7gXdV1WHAA8DpkwhUkjQd4w4NrQMem2Qd8DhgB/AS4JJu+QXAyWPuQ5I0RSMn\ngqq6B/hj4C56CeAh4Brgwap6uKu2HTho2PpJzkiyNcnW+fn5UcOQJI1pnKGh9cBJwKHAU4C9gOOG\nVK1h61fVlqqaq6q5DRs2jBqGJGlM4/xU5UuBr1TVPECSjwK/AOyTZF3XKzgYuHf8MKVHp8Gfr/Sn\nKzUL48wR3AUcleRxSQJsAr4IfAZ4VVdnM3DZeCFKkqZpnDmCq+lNCl8L3NhtawtwJvCbSbYBTwLO\nn0CckqQpGWdoiKp6O/D2geI7gCPH2a4kaeV4ZbEkNW6sHoGkyRqcPAYnkDV99ggkqXEmAklqnIlA\nkhpnIpCkxpkIJKlxJgJJapyJQJIa53UE0irntQWaNnsEktQ4E4EkNc5EIEmNMxFIUuNMBJLUOBOB\nJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY3zXkNa1YbdZ0fSZNkjkKTGmQgkqXEmAklq3FiJIMk+\nSS5JcmuSW5L8fJJ9k1yR5Pbu7/pJBStJmrxxJ4vfA/xdVb0qyR7A44DfBq6sqnOSnAWcBZw55n7U\nACeGpdkYuUeQ5AnAi4HzAarqB1X1IHAScEFX7QLg5HGDlCRNzzhDQ08D5oG/TvKFJO9NshdwQFXt\nAOj+7j9s5SRnJNmaZOv8/PwYYUiSxjFOIlgHvAA4t6qeD3yH3jDQslTVlqqaq6q5DRs2jBGGJGkc\n4ySC7cD2qrq6e30JvcRwX5IDAbq/948XoiRpmkZOBFX1NeDuJM/oijYBXwQuBzZ3ZZuBy8aKUJI0\nVeN+a+jXgAu7bwzdAbyeXnK5OMnpwF3AKWPuQ5I0RWMlgqq6DpgbsmjTONuVJK0cryyWpMaZCCSp\ncSYCSWqciUCSGucP00hr0OB9me4854QZRaJHA3sEktQ4E4EkNc5EIEmNMxFIUuOcLJYepYb90I+T\nyhrGHoEkNc4egWbCn6WUVg97BJLUOBOBJDXORCBJjTMRSFLjnCyWHgWcfNc47BFIUuNMBJLUOBOB\nJDXORCBJjTMRSFLjTASS1DgTgSQ1buzrCJLsBmwF7qmqE5McClwE7AtcC7y2qn4w7n60tvk9d2n1\nmkSP4C3ALX2v3wm8q6oOAx4ATp/APiRJUzJWIkhyMHAC8N7udYCXAJd0VS4ATh5nH5Kk6Rq3R/Bu\n4LeAH3WvnwQ8WFUPd6+3AwcNWzHJGUm2Jtk6Pz8/ZhiSpFGNnAiSnAjcX1XX9BcPqVrD1q+qLVU1\nV1VzGzZsGDUMSdKYxpksfiHw8iTHA48BnkCvh7BPknVdr+Bg4N7xw9Rq5e/iSmvfyD2CqnpbVR1c\nVRuBU4FPV9VrgM8Ar+qqbQYuGztKSdLUTOM21GcCFyX5A+ALwPlT2IdWMb8qunoNHht7b4IJJYKq\n+izw2e75HcCRk9iuJGn6vLJYkhpnIpCkxpkIJKlxJgJJapyJQJIaZyKQpMaZCCSpcSYCSWqciUCS\nGmcikKTGmQgkqXEmAklqnIlAkhpnIpCkxpkIJKlxJgJJapyJQJIaZyKQpMaZCCSpcSYCSWqciUCS\nGmcikKTGmQgkqXEmAklqnIlAkhq3btQVkxwCfAB4MvAjYEtVvSfJvsCHgY3AncAvV9UD44eqlbbx\nrL99RNmd55wwg0g0LR5jwXg9goeB/1hVzwSOAt6U5HDgLODKqjoMuLJ7LUlapUZOBFW1o6qu7Z5/\nC7gFOAg4Cbigq3YBcPK4QUqSpmcicwRJNgLPB64GDqiqHdBLFsD+C6xzRpKtSbbOz89PIgxJ0gjG\nTgRJHg98BHhrVX1zuetV1ZaqmququQ0bNowbhiRpRCNPFgMk2Z1eEriwqj7aFd+X5MCq2pHkQOD+\ncYOUtHKcQG7PyD2CJAHOB26pqj/tW3Q5sLl7vhm4bPTwJEnTNk6P4IXAa4Ebk1zXlf02cA5wcZLT\ngbuAU8YLUZI0TSMngqr6v0AWWLxp1O1qdRs2bCBpbfPKYklqnIlAkhpnIpCkxpkIJKlxJgJJapyJ\nQJIaZyKQpMaZCCSpcSYCSWrcWDed06OHVwxL7bJHIEmNs0cgaZd5q+pHF3sEktQ4ewSSluQc0qOb\niUDSinFIaXVyaEiSGmePoFF29SXtZI9Akhpnj2CNG/xk73irpF1lIpA0EU4Er10ODUlS4+wRNMCJ\nYUmLsUcgSY2zR7CGLOeTvZ/+tZpM6nx0/mG6TAQzsJyT2jd0SStlakNDSY5NcluSbUnOmtZ+JEnj\nSVVNfqPJbsCXgH8NbAf+Hnh1VX1xWP25ubnaunXrxONYrfy0L03HqMNFa/V6nCTXVNXcuNuZVo/g\nSGBbVd1RVT8ALgJOmtK+JEljmNYcwUHA3X2vtwM/118hyRnAGd3L7ye5aUqxTNJ+wNdnHcQyGOdk\nrYU410KMMOU4886JbWettOczJrGRaSWCDCn7qTGoqtoCbAFIsnUS3ZtpM87JMs7JWQsxgnFOWpKJ\njKlPa2hoO3BI3+uDgXuntC9J0himlQj+HjgsyaFJ9gBOBS6f0r4kSWOYytBQVT2c5M3AJ4HdgPdV\n1c2LrLJlGnFMgXFOlnFOzlqIEYxz0iYS51S+PipJWju815AkNc5EIEmNW7FEkOSUJDcn+VGSuYFl\nb+tuRXFbkpctsP6hSa5OcnuSD3eT0NOO+cNJrusedya5boF6dya5sau34pdIJ/ndJPf0xXr8AvVm\netuPJH+U5NYkNyS5NMk+C9Rb8fZcqm2S7NmdD9u683DjSsQ1EMMhST6T5Jbu/9JbhtQ5OslDfefC\n76x0nF0cix7D9PxZ1543JHnBDGJ8Rl87XZfkm0neOlBnJu2Z5H1J7u+/virJvkmu6N4Dr0iyfoF1\nN3d1bk+yeVk7rKoVeQDPpHfxw2eBub7yw4HrgT2BQ4EvA7sNWf9i4NTu+XnAG1cq9m6ffwL8zgLL\n7gT2W8l4Bvb/u8B/WqLObl3bPg3Yo2vzw1c4zmOAdd3zdwLvXA3tuZy2Af4DcF73/FTgwzM4zgcC\nL+ie703vNi6DcR4NfGylY9vVYwgcD3yC3jVHRwFXzzje3YCvAU9dDe0JvBh4AXBTX9kfAmd1z88a\n9v8H2Be4o/u7vnu+fqn9rViPoKpuqarbhiw6Cbioqr5fVV8BttG7RcWPJQnwEuCSrugC4ORpxjtk\n/78MfGil9jkFM7/tR1V9qqoe7l5eRe/6ktVgOW1zEr3zDnrn4abuvFgxVbWjqq7tnn8LuIXeVfxr\n0UnAB6rnKmCfJAfOMJ5NwJer6qszjOHHqupzwDcGivvPwYXeA18GXFFV36iqB4ArgGOX2t9qmCMY\ndjuKwZP7ScCDfW8iw+pM0y8C91XV7QssL+BTSa7pbp0xC2/uutjvW6DLuJx2Xkmn0ftEOMxKt+dy\n2ubHdbrz8CF65+VMdENTzweuHrL455Ncn+QTSZ61ooH9xFLHcLWdj6ey8Ae91dCeAAdU1Q7ofSgA\n9h9SZ6R2neh1BEn+N/DkIYvOrqrLFlptSNngd1qXU2cky4z51SzeG3hhVd2bZH/giiS3dhl9YhaL\nEzgX+H16bfL79IaxThvcxJB1J/7d4eW0Z5KzgYeBCxfYzNTbc8BMz8FdleTxwEeAt1bVNwcWX0tv\neOPb3VzR3wCHrXSMLH0MV1N77gG8HHjbkMWrpT2Xa6R2nWgiqKqXjrDacm5H8XV6Xcd13aexid2y\nYqmYk6wDfgn4F4ts497u7/1JLqU31DDRN67ltm2SvwI+NmTRitz2YxntuRk4EdhU3aDmkG1MvT0H\nLKdtdtbZ3p0TT+SRXfepS7I7vSRwYVV9dHB5f2Koqo8n+Ysk+1XVit5AbRnHcDXdhuY44Nqqum9w\nwWppz859SQ6sqh3dMNr9Q+pspzevsdPB9OZlF7UahoYuB07tvpVxKL1s+/n+Ct0bxmeAV3VFm4GF\nehiT9lLg1qraPmxhkr2S7L3zOb0J0RW9k+rA2OorFtj/zG/7keRY4Ezg5VX13QXqzKI9l9M2l9M7\n76B3Hn56oUQ2Ld2cxPnALVX1pwvUefLOuYskR9L7P/4PKxflso/h5cDrum8PHQU8tHPYYwYW7PGv\nhvbs038OLvQe+EngmCTruyHiY7qyxa3gLPgr6GWr7wP3AZ/sW3Y2vW9t3AYc11f+ceAp3fOn0UsQ\n24D/Cey5QnG/H3jDQNlTgI/3xXV997iZ3hDISn/D4IPAjcAN3cly4GCc3evj6X3T5MszinMbvfHL\n67rHeYNxzqo9h7UN8Hv0khbAY7rzblt3Hj5tBu33Inrd/Bv62vB44A07z1HgzV27XU9vQv4XZhDn\n0GM4EGeAP+/a+0b6vkm4wrE+jt4b+xP7ymbenvQS0w7gh9375un05qSuBG7v/u7b1Z0D3tu37mnd\neboNeP1y9uctJiSpcathaEiSNEMmAklqnIlAkhpnIpCkxpkIJKlxJgJJapyJQJIa9/8B+rbuyM3h\nLnYAAAAASUVORK5CYII=\n",
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=0, \\sigma=2),\\ N=2000$"
|
||
],
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x116fe7668>"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"x2 = Gaussian(0, 2, 2000)\n",
|
||
"x2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"You can then compare the two Gaussians by displaying their histograms:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFOZJREFUeJzt3X+0ZWV93/H3xxnAVIlAGJCIOpiFFgxhMLMIDUlKxBB+\nuAQbtRiXmRaSadrQ6lrtSsayklJjW0ybaNommolQJ1k0QBWEBRidotaVtRLMID+EAPIjoyKEGRUQ\niDEi3/6x99Xj5dx7z73nnPtjnvdrrbPu2fvZe5/vPGfP5+zz7H33TVUhSdq3PWelC5AkTZ9hL0kN\nMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7keTMJI8kuTjJf0ny9pWuabVJ8pkkr1zpOqSl\nMuwbkuTHkuw3a95zgFOAXwK+CvwC8AdTruOAJJck+UKSJ5LckuSMab7mCDVdkGRXkm8m+eCQRf4b\n8M4lbvvgJJXkz2fN/4Mk71nKNge2MW/dSQ5JcnWSp/r+/vlR2kZp19pi2LflPODsWfNOBq6qqmv7\n6Ruq6htTrmM98CXgHwMvAH4duDLJxim/7nweAt4FXDpH+7XATyc5Ygnb3gT8DXDsrPU3AbcuYXuD\nFqr794C/Bw4H3gK8b+Abynxto7RrDTHs23ICsHXWvJOAm/rnZwD/b7AxyYVJ3jcwfXCSbyV57lKL\nqKqnquqiqtpdVc9U1XXAXwM/utC6SfZL8p+S7O7rqP5x21Lr6Wu6qqo+QvftZlj73wE3A6ctYfOb\ngF3ATuB1AEnWAccBtyyp4O/WNWfdSZ4H/Bzw61X1ZFX9Gd2H1lvna1to3XHq1cox7BuRZD2wFzg1\nycsHmtbXd++Gdxxwz6xVj+N7jz43Aff04Te4/euSPDbH47oFajsceDlw5wj/lHcBpwI/CRwE3Ahc\nDbx+UvXM4y7g+CWsdwJdH34EOKef9w+Bdf02p1X3y4FvV9XnB+bdBrxygbaF1tUatH6lC9Cy2QT8\nL2B/4G3AryQ5lu8Nm4OAJ2atdxwwOK68ie4//feoqtcupaj+HMJlwI6qunuBZQ8E/g3wI1X1pX7e\nh4F/WlUPTKKeBTwBLHUY5xrgE8D7+3/HJuCOqvrW4IITrvv5wOOz5j0OHLhA20Lrag3yyL4dp9Ad\nBf82cF6Sl9ANSewcWOZRBv4zJ9kf+CHgcwPLHM/448wz238O8Md048IXjLDKTwEPVNW9A/MOphsP\nXw4HAo8tZoUkBwDHALdW1aPAZ+iGy2aO9qfpSeD7Z837froPrfnaFlpXa5Bh347DqurRqvpTujH6\n3wWeX1VPDSxzO93X9xnHAl+uqr8FSBK6D41nHdkn+WiSJ+d4fHTI8gEuoTv593Ozj3DnsIHuA2lw\nG68HnjW8sdh6RnQMQ/7tC/hh4BvAzDePmaGcExgyXj/huj8PrE9y9MC84+mGy+ZrW2hdrUEO4+zD\nkvwE3TDM14FPDzT9C7rQ+visVW6gu0Lmsn76OOCwJD9Ed9XHhcBLgd2zX6uqFnvp5PvowvM1w67+\nmbmMsKr+2cDsO4BXJdlEd27hPwAFXDFuPf05jfV04+jr+hPQT1fV0337AXQnkLfMU98wJwC3DZwX\nuYbuEs5n+vqnVndVPZXkKuCdSX6RbujobODH52vr65i3XWtQVfnYRx90V1N8A3jvkLZfBV48a96h\nwIPA9/XTvwV8iO4o78vAvwbupxtfH6eul9KF9N/RDRfMPN4ysMyNwC8NWfdCug+eh4EPAodOqK8u\n6msafFw00P5GuktU561vyHb/J/A/Zs27lS7sD1yGug+h+zbxFPBF4OdHaRul3cfaeqR/U7WPSpJa\nxJuc5D8De6rqvf2wwQeq6sPTq3BoDfvTffP4kRpteGfqktwEnF9Vd6zG+qSFGPaaU5IHgdOq6q9W\nuhZJ4zHsNVSSg4FHgOd59CqtfYa9JDXASy8lqQHLeunloYceWhs3blzOl5SkNe/mm2/+SlVtGGcb\nyxr2GzduZNeuXcv5kpK05iX5wrjbcBhHkhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIaYNhLy2TjtuvZuO36sZeRlsKwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpASP9\npaoku4EngG8DT1fV5iSHAFcAG4HdwJuq6tHplClJGsdijux/uqo2VdXmfnobcGNVHQ3c2E9Lklah\ncYZxzgZ29M93AOeMX44kaRpGDfsCPp7k5iRb+3mHV9XDAP3Pw4atmGRrkl1Jdu3du3f8iiVJizbS\nmD1wclU9lOQwYGeSu0d9garaDmwH2Lx5cy2hRknSmEY6sq+qh/qfe4CrgROBR5IcAdD/3DOtIiVJ\n41kw7JM8L8mBM8+B04A7gGuBLf1iW4BrplWkJGk8owzjHA5cnWRm+f9dVX+a5C+BK5OcD3wReOP0\nypT2HYO3MN598VkrWIlasmDYV9UDwPFD5n8VOHUaRUmSJsvfoJWkBhj2ktQAw15aQZP4M4T+KUON\nwrCXpAYY9pLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBo97iWNISeQ28VgOP7CWpAYa9JDXAsJek\nBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7SWqA\n97OXVqGZe+Dvvvis75kenCcthkf2ktQAw16SGmDYS1IDRg77JOuS3JLkun76qCQ3Jbk3yRVJ9p9e\nmZKkcSzmyP5twF0D0+8G3lNVRwOPAudPsjBJ0uSMFPZJjgTOAj7QTwd4NfChfpEdwDnTKFCSNL5R\nj+zfC/wq8Ew//QPAY1X1dD/9IPCiCdcmSZqQBa+zT/JaYE9V3ZzklJnZQxatOdbfCmwFeMlLXrLE\nMqW1Y/Y18otZZ1rbl0Y5sj8ZeF2S3cDldMM37wUOSjLzYXEk8NCwlatqe1VtrqrNGzZsmEDJkqTF\nWjDsq+odVXVkVW0EzgU+UVVvAT4JvKFfbAtwzdSqlCSNZZzbJfwacHmSdwG3AJdMpiRJMxYzvCPN\nZ1FhX1WfAj7VP38AOHHyJUmSJs3foJWkBhj2ktQAb3EsTYnj7VpNPLKXpAYY9pLUAMNekhrgmL20\nRnlOQIvhkb0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7KV9xMZt13vtveZk2EtSAwx7\nSWqAYS9JDTDspSVwfFxrjWEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kN\nMOwlqQGGvSQ1YMGwT/LcJJ9JcluSO5P8x37+UUluSnJvkiuS7D/9ciVJSzHKkf03gVdX1fHAJuD0\nJCcB7wbeU1VHA48C50+vTEnSOBYM++o82U/u1z8KeDXwoX7+DuCcqVQoSRrbSGP2SdYluRXYA+wE\n7gceq6qn+0UeBF40nRIlSeMaKeyr6ttVtQk4EjgROGbYYsPWTbI1ya4ku/bu3bv0SiVJS7aoq3Gq\n6jHgU8BJwEFJ1vdNRwIPzbHO9qraXFWbN2zYME6tkqQlGuVqnA1JDuqffx/wGuAu4JPAG/rFtgDX\nTKtISdJ41i+8CEcAO5Kso/twuLKqrkvyV8DlSd4F3AJcMsU6pVXPP1Oo1WzBsK+q24EThsx/gG78\nXpK0yvkbtJLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMM\ne0lqgGEvSQ0w7CWpAYa9NIKN265fM/erX0u1avkY9pLUAMNekhpg2EtSA0b5G7SSeo6Fa63yyF6S\nGmDYS1IDDHtJaoBhLzXEa/DbZdhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktSABe+Nk+TF\nwB8BLwSeAbZX1e8mOQS4AtgI7AbeVFWPTq9UafVZK9esr5U6NT2jHNk/DfzbqjoGOAn4lSTHAtuA\nG6vqaODGflqStAotGPZV9XBVfbZ//gRwF/Ai4GxgR7/YDuCcaRUpSRrPosbsk2wETgBuAg6vqoeh\n+0AADpt0cZKkyRg57JM8H/gw8Paq+voi1tuaZFeSXXv37l1KjZKkMY0U9kn2owv6y6rqqn72I0mO\n6NuPAPYMW7eqtlfV5qravGHDhknULElapAXDPkmAS4C7qup3BpquBbb0z7cA10y+PEnSJIzyZwlP\nBt4KfC7Jrf28fw9cDFyZ5Hzgi8Abp1OiJGlcC4Z9Vf0ZkDmaT51sOZKWw8x197svPmuFK9Fy8Tdo\nJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16S\nGmDYS1IDRrmfvaQ1aOY2xhJ4ZC9JTTDsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEv\nSQ0w7CWpAYa9JDXAe+NIvcF7yey++KxnzZPWMo/sJakBhr0kNcCwl6QGGPaS1IAFwz7JpUn2JLlj\nYN4hSXYmubf/efB0y5QkjWOUI/sPAqfPmrcNuLGqjgZu7KclSavUgmFfVZ8GvjZr9tnAjv75DuCc\nCdclSZqgpY7ZH15VDwP0Pw+ba8EkW5PsSrJr7969S3w5SdOwcdv1c/4uwXxtWnumfoK2qrZX1eaq\n2rxhw4Zpv5wkaYilhv0jSY4A6H/umVxJkqRJW2rYXwts6Z9vAa6ZTDmSpGkY5dLLPwH+HHhFkgeT\nnA9cDPxMknuBn+mnJUmr1II3QquqN8/RdOqEa5EkTYm/QStJDTDsJakB3s9eGqK168tn/r0z9/HX\nvscje0lqgGEvSQ0w7CXNy9sm7BsMe0lqgGEvSQ0w7CWpAV56qWZ5ueGzLWZs3v5bWzyyl6QGGPaS\n1ADDXpIa4Ji99kmDY88zY8peK66WeWQvSQ0w7CWpAYa9JDXAsJekBhj2ktQAw16SGmDYS1IDvM5e\nzfP6e7XAI3tJaoBhL0kNMOwlqQGO2Wuf55j8ZM3Xn97jfvXyyF6SGmDYS1IDDHtJaoBj9lqTZo8N\nOy4/fUvpY8fwV4+xjuyTnJ7kniT3Jdk2qaIkSZO15LBPsg74PeAM4FjgzUmOnVRhkqTJGefI/kTg\nvqp6oKr+HrgcOHsyZUmSJilVtbQVkzcAp1fVL/bTbwV+rKoumLXcVmBrP/nDwB1LL3fZHAp8ZaWL\nGMFaqHMt1AjWOWnWOVmvqKoDx9nAOCdoM2Tesz45qmo7sB0gya6q2jzGay4L65yctVAjWOekWedk\nJdk17jbGGcZ5EHjxwPSRwEPjlSNJmoZxwv4vgaOTHJVkf+Bc4NrJlCVJmqQlD+NU1dNJLgA+BqwD\nLq2qOxdYbftSX2+ZWefkrIUawTonzTona+w6l3yCVpK0dni7BElqgGEvSQ2YeNgneWOSO5M8k2Tz\nrLZ39LdWuCfJz86x/lFJbkpyb5Ir+pO/U9W/zq39Y3eSW+dYbneSz/XLjX0p1BLqvCjJlwdqPXOO\n5VbsNhZJ/muSu5PcnuTqJAfNsdyK9OVCfZPkgH5/uK/fDzcuV20DNbw4ySeT3NX/X3rbkGVOSfL4\nwL7wG8tdZ1/HvO9jOv+978/bk7xqBWp8xUA/3Zrk60nePmuZFenPJJcm2ZPkjoF5hyTZ2WfgziQH\nz7Huln6Ze5NsWfDFqmqiD+AY4BXAp4DNA/OPBW4DDgCOAu4H1g1Z/0rg3P75+4F/OekaF6j/t4Hf\nmKNtN3DoctYz6/UvAv7dAsus6/v2ZcD+fZ8fu4w1ngas75+/G3j3aunLUfoG+FfA+/vn5wJXrMD7\nfATwqv75gcDnh9R5CnDdcte22PcROBP4KN3v5ZwE3LTC9a4D/gZ46WroT+CngFcBdwzM+y1gW/98\n27D/Q8AhwAP9z4P75wfP91oTP7Kvqruq6p4hTWcDl1fVN6vqr4H76G658B1JArwa+FA/awdwzqRr\nnEv/+m8C/mS5XnMKVvQ2FlX18ap6up/8C7rfv1gtRumbs+n2O+j2w1P7/WLZVNXDVfXZ/vkTwF3A\ni5azhgk6G/ij6vwFcFCSI1awnlOB+6vqCytYw3dU1aeBr82aPbgPzpWBPwvsrKqvVdWjwE7g9Ple\naznH7F8EfGlg+kGevQP/APDYQFgMW2aafhJ4pKrunaO9gI8nubm/DcRKuKD/OnzpHF/vRunn5XIe\n3VHdMCvRl6P0zXeW6ffDx+n2yxXRDyOdANw0pPkfJbktyUeTvHJZC/uuhd7H1bQ/Qvdtba6DudXQ\nnwCHV9XD0H3wA4cNWWbR/bqk6+yT/F/ghUOaLqyqa+Zabci82dd9jnQLhqUYseY3M/9R/clV9VCS\nw4CdSe7uP5knZr46gfcBv0nXJ79JN+R03uxNDFl3otfXjtKXSS4EngYum2MzU+/LIVZ0H1ysJM8H\nPgy8vaq+Pqv5s3RDEU/2524+Ahy93DWy8Pu4mvpzf+B1wDuGNK+W/hzVovt1SWFfVa9Zwmqj3F7h\nK3Rf89b3R1UTuwXDQjUnWQ/8E+BH59nGQ/3PPUmuphsWmGhAjdq3Sf4QuG5I09RvYzFCX24BXguc\nWv0A45BtTL0vhxilb2aWebDfJ17As79mT12S/eiC/rKqump2+2D4V9UNSX4/yaFVtaw39RrhfVxN\nt1U5A/hsVT0yu2G19GfvkSRHVNXD/ZDXniHLPEh3nmHGkXTnSee0nMM41wLn9lc7HEX3qfmZwQX6\nYPgk8IZ+1hZgrm8Kk/Ya4O6qenBYY5LnJTlw5jndichlvYPnrLHO18/x+it6G4skpwO/Bryuqv52\njmVWqi9H6Ztr6fY76PbDT8z1gTUt/TmCS4C7qup35ljmhTPnEpKcSPd/+avLV+XI7+O1wC/0V+Wc\nBDw+M0SxAub85r4a+nPA4D44VwZ+DDgtycH9cO5p/by5TeHs8uvpPnW+CTwCfGyg7UK6qyHuAc4Y\nmH8D8IP985fRfQjcB/wf4IBJ1zhH3R8EfnnWvB8Ebhio67b+cSfdkMVyn7n/Y+BzwO39DnHE7Dr7\n6TPpruC4f7nr7N+3LwG39o/3z65xJftyWN8A76T7cAJ4br/f3dfvhy9bgff5J+i+kt8+0I9nAr88\ns48CF/R9dxvdifAfX4E6h76Ps+oM3R85ur/fdzcvd519Hf+ALrxfMDBvxfuT7sPnYeBbfW6eT3eO\n6Ebg3v7nIf2ym4EPDKx7Xr+f3gf884Vey9slSFID/A1aSWqAYS9JDTDsJakBhr0kNcCwl6QGGPaS\n1ADDXpIa8P8BEb7Ae9JKdQAAAAAASUVORK5CYII=\n"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFmZJREFUeJzt3XuwZWV55/HvLzSgIkojDSIwNqbQEW/onCIkGoexHeRW\nglEyGEe7hAmjo4kmMxMw1MRUEmcwNzUzCaQjRrQokUEJjNEog1rOVA2YBrkKSIsIDS0cI+AtXojP\n/LFX63azz6X35exzeL+fql1n73e9a62n37V6P/t9373WTlUhSWrXz8w6AEnSbJkIJKlxJgJJapyJ\nQJIaZyKQpMaZCCSpcSYCSWqciUCSGmci0IKSHJ/kviTnJPlvSd4665hWmySfT/KsWcchjcNEIJL8\nXJLdB8p+Bjga+FXgH4DXAX+5ArHsm+TSJN9J8tUkvzLtfS4Sy55Jzu/i+FaSLyQ5bqDaHwO/N+L2\n1yepJP9voPwvk7xrmnEv1s5LHYPVdIw0GSYCAZwGnDRQ9kLgo1V1eff641X1jysQy58DPwAOAF4D\nnDvDT9zrgLuBfwk8EfgvwMVJNvbVuRz4V0kOHGH7RwBfAw4fWP8I4LpRAu4sJ+7F2nmpY7CajpEm\noap8NP4APg98aqDsPwPpnn8a+LcDy88Gzu17vR74IfCYMeLYi94bzNP7yj4InLOMdXcH3gHc2cVR\n3eP6CbfVDcArB8quADaPsK3fAP4XcAnw77uy3YDvAs+dVtyLtfNSx2CcY+Rj9T7sETQuyTpgHtiU\n5Ol9i9ZV978ceA5w28Cqz+GnP7UeAdxWVd8b2P7Hkjy4wONjA9t8OvBPVfWlvrLrgeV82vwDYBPw\ni8A+wJXApcArxoiHgXUP6GK8eWDRLcDzlhHjoOfTa8O/AU7uyv45vWRwyxTjXqydlzoG4xwjrVLr\nZh2AZu4I4K+BPYC3AG9Kcjg//Ua0D/CtgfWeA/SPYx9B7w3hp1TVibsQy+OBhwbKHgL2XmylJHsD\nv07vU/TdXdlHgH9TVXeMEU//PnYHLgQuqKpbBxZ/Cxh1aOgyej2u87p/xxHATVX1w/6KE457sXZe\n6hiMdIy0utkj0NH0Pj3/CXBakn8GHENvuGOnB+j7j55kD+BngRv76jyP8ca1Ab4NPGGg7Ak8MgkN\nejFwR1Xd3le2nt74+9i6ifMP0hsSefOQKnsDD+7iNvcEnglcV1UP0BueO46f9BLGtkjci7XzUsdg\n1GOkVcxEoP2r6oGq+jvgauA9wOOr6jt9dW6gNySw0+HAPVX1XYAkoZdQHtEjSPKJJN9e4PGJgepf\nAtYlOayv7Hk8cihm0AZ6yWrnPkNvSOgRQya7GM/ObZ1Pb2L0lYOf1DvPHPZvX8KzgX8EdvZYdg4P\nPR/4wpTjXqydlzoGox4jrWaznqTwsfIP4EXAG+l94+PEvvJnAN8D3jhQ/zeBLX2vX0vvE+DPAo+l\nNz5f9E0gjhHbRcCH6E1KvpDesMOz+pa/H3j/wDpz9CZYj+jiOYfeJ+zdJxDPecBV9JLjsOV7At8A\nnrJQfAus9++A/9P3+qn0ehXfAF60AnEv2M7LOAaLLvex9h4zD8DHDA46vJLep9F3D1n2W8AhA2X7\nAduBx3av/5DeN12+BNwD/BrwZXrj0OPGti+9T8ffAe4CfmVg+ZXArw5Z72zgXmBH92a83wRieWqX\n4L5Hb0hk5+M1fXVOofc120XjG7Lt/wH894Gy64AfAXuvQNwLtvMyjsGiy32svcfOrweqMUlSu3Dw\nk/xX4P6qenc3FPHeqvrI9CIcGsMe9IZgnlvDh2hWXJKrgdOr6qbVGJ+0HCYC7bIk24FjquqLs45F\n0vhMBNolSdYD9wF7+alXenQwEUhS4/z6qCQ1blVcWbzffvvVxo0bZx2GJK0p11xzzderasO421kV\niWDjxo1s3bp11mFI0pqS5KuT2I5DQ5LUOBOBJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY0zEUhS\n40wEktS4VXFlsTRtG8/620eU3XnOCTOIRFp97BFIUuOWTARJ3pfk/iQ39ZX9UZJbk9yQ5NIk+/Qt\ne1uSbUluS/KyaQUuSZqM5fQI3g8cO1B2BfDsqnouvd+tfRtAksOBU4Fndev8RZLdJhatJGnilkwE\nVfU54BsDZZ+qqoe7l1cBB3fPTwIuqqrvV9VXgG3AkROMV5I0YZOYIzgN+ET3/CDg7r5l27uyR0hy\nRpKtSbbOz89PIAxJ0ijGSgRJzgYeBi7cWTSk2tDfwqyqLVU1V1VzGzaM/bsKkqQRjfz10SSbgROB\nTfWTHz7eDhzSV+1g4N7Rw5MkTdtIPYIkxwJnAi+vqu/2LbocODXJnkkOBQ4DPj9+mJKkaVmyR5Dk\nQ8DRwH5JtgNvp/ctoT2BK5IAXFVVb6iqm5NcDHyR3pDRm6rqn6YVvCRpfEsmgqp69ZDi8xep/w7g\nHeMEJUlaOV5ZLEmNMxFIUuNMBJLUOBOBJDXORCBJjTMRSFLj/GEarXn+6Iw0HnsEktQ4E4EkNc6h\nIanP4DCTQ0xqgT0CSWqciUCSGmcikKTGmQgkqXEmAklqnIlAkhpnIpCkxnkdgTQBXn+gtcwegSQ1\nzh6BmjXsZnVSi+wRSFLjTASS1DiHhqRd5JCSHm3sEUhS45ZMBEnel+T+JDf1le2b5Iokt3d/13fl\nSfJnSbYluSHJC6YZvCRpfMvpEbwfOHag7Czgyqo6DLiyew1wHHBY9zgDOHcyYUqSpmXJOYKq+lyS\njQPFJwFHd88vAD4LnNmVf6CqCrgqyT5JDqyqHZMKWFpJzgeoBaPOERyw8829+7t/V34QcHdfve1d\n2SMkOSPJ1iRb5+fnRwxDkjSuSU8WZ0hZDatYVVuqaq6q5jZs2DDhMCRJyzVqIrgvyYEA3d/7u/Lt\nwCF99Q4G7h09PEnStI2aCC4HNnfPNwOX9ZW/rvv20FHAQ84PSNLqtuRkcZIP0ZsY3i/JduDtwDnA\nxUlOB+4CTumqfxw4HtgGfBd4/RRiliRN0HK+NfTqBRZtGlK3gDeNG5QkaeV4ZbEkNc5EIEmNMxFI\nUuO8+6gelbwiWFo+ewSS1DgTgSQ1zkQgSY0zEUhS45wslqZg2GT1neecMINIpKXZI5CkxpkIJKlx\nDg1pTVnL1wc4XKTVyh6BJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY0zEUhS40wEktQ4E4EkNc5E\nIEmNMxFIUuNMBJLUOBOBJDVurESQ5DeS3JzkpiQfSvKYJIcmuTrJ7Uk+nGSPSQUrSZq8kRNBkoOA\nXwfmqurZwG7AqcA7gXdV1WHAA8DpkwhUkjQd4w4NrQMem2Qd8DhgB/AS4JJu+QXAyWPuQ5I0RSMn\ngqq6B/hj4C56CeAh4Brgwap6uKu2HTho2PpJzkiyNcnW+fn5UcOQJI1pnKGh9cBJwKHAU4C9gOOG\nVK1h61fVlqqaq6q5DRs2jBqGJGlM4/xU5UuBr1TVPECSjwK/AOyTZF3XKzgYuHf8MKVHp8Gfr/Sn\nKzUL48wR3AUcleRxSQJsAr4IfAZ4VVdnM3DZeCFKkqZpnDmCq+lNCl8L3NhtawtwJvCbSbYBTwLO\nn0CckqQpGWdoiKp6O/D2geI7gCPH2a4kaeV4ZbEkNW6sHoGkyRqcPAYnkDV99ggkqXEmAklqnIlA\nkhpnIpCkxpkIJKlxJgJJapyJQJIa53UE0irntQWaNnsEktQ4E4EkNc5EIEmNMxFIUuNMBJLUOBOB\nJDXORCBJjTMRSFLjTASS1DgTgSQ1zkQgSY3zXkNa1YbdZ0fSZNkjkKTGmQgkqXEmAklq3FiJIMk+\nSS5JcmuSW5L8fJJ9k1yR5Pbu7/pJBStJmrxxJ4vfA/xdVb0qyR7A44DfBq6sqnOSnAWcBZw55n7U\nACeGpdkYuUeQ5AnAi4HzAarqB1X1IHAScEFX7QLg5HGDlCRNzzhDQ08D5oG/TvKFJO9NshdwQFXt\nAOj+7j9s5SRnJNmaZOv8/PwYYUiSxjFOIlgHvAA4t6qeD3yH3jDQslTVlqqaq6q5DRs2jBGGJGkc\n4ySC7cD2qrq6e30JvcRwX5IDAbq/948XoiRpmkZOBFX1NeDuJM/oijYBXwQuBzZ3ZZuBy8aKUJI0\nVeN+a+jXgAu7bwzdAbyeXnK5OMnpwF3AKWPuQ5I0RWMlgqq6DpgbsmjTONuVJK0cryyWpMaZCCSp\ncSYCSWqciUCSGucP00hr0OB9me4854QZRaJHA3sEktQ4E4EkNc5EIEmNMxFIUuOcLJYepYb90I+T\nyhrGHoEkNc4egWbCn6WUVg97BJLUOBOBJDXORCBJjTMRSFLjnCyWHgWcfNc47BFIUuNMBJLUOBOB\nJDXORCBJjTMRSFLjTASS1DgTgSQ1buzrCJLsBmwF7qmqE5McClwE7AtcC7y2qn4w7n60tvk9d2n1\nmkSP4C3ALX2v3wm8q6oOAx4ATp/APiRJUzJWIkhyMHAC8N7udYCXAJd0VS4ATh5nH5Kk6Rq3R/Bu\n4LeAH3WvnwQ8WFUPd6+3AwcNWzHJGUm2Jtk6Pz8/ZhiSpFGNnAiSnAjcX1XX9BcPqVrD1q+qLVU1\nV1VzGzZsGDUMSdKYxpksfiHw8iTHA48BnkCvh7BPknVdr+Bg4N7xw9Rq5e/iSmvfyD2CqnpbVR1c\nVRuBU4FPV9VrgM8Ar+qqbQYuGztKSdLUTOM21GcCFyX5A+ALwPlT2IdWMb8qunoNHht7b4IJJYKq\n+izw2e75HcCRk9iuJGn6vLJYkhpnIpCkxpkIJKlxJgJJapyJQJIaZyKQpMaZCCSpcSYCSWqciUCS\nGmcikKTGmQgkqXEmAklqnIlAkhpnIpCkxpkIJKlxJgJJapyJQJIaZyKQpMaZCCSpcSYCSWqciUCS\nGmcikKTGmQgkqXEmAklqnIlAkhq3btQVkxwCfAB4MvAjYEtVvSfJvsCHgY3AncAvV9UD44eqlbbx\nrL99RNmd55wwg0g0LR5jwXg9goeB/1hVzwSOAt6U5HDgLODKqjoMuLJ7LUlapUZOBFW1o6qu7Z5/\nC7gFOAg4Cbigq3YBcPK4QUqSpmcicwRJNgLPB64GDqiqHdBLFsD+C6xzRpKtSbbOz89PIgxJ0gjG\nTgRJHg98BHhrVX1zuetV1ZaqmququQ0bNowbhiRpRCNPFgMk2Z1eEriwqj7aFd+X5MCq2pHkQOD+\ncYOUtHKcQG7PyD2CJAHOB26pqj/tW3Q5sLl7vhm4bPTwJEnTNk6P4IXAa4Ebk1zXlf02cA5wcZLT\ngbuAU8YLUZI0TSMngqr6v0AWWLxp1O1qdRs2bCBpbfPKYklqnIlAkhpnIpCkxpkIJKlxJgJJapyJ\nQJIaZyKQpMaZCCSpcSYCSWrcWDed06OHVwxL7bJHIEmNs0cgaZd5q+pHF3sEktQ4ewSSluQc0qOb\niUDSinFIaXVyaEiSGmePoFF29SXtZI9Akhpnj2CNG/xk73irpF1lIpA0EU4Er10ODUlS4+wRNMCJ\nYUmLsUcgSY2zR7CGLOeTvZ/+tZpM6nx0/mG6TAQzsJyT2jd0SStlakNDSY5NcluSbUnOmtZ+JEnj\nSVVNfqPJbsCXgH8NbAf+Hnh1VX1xWP25ubnaunXrxONYrfy0L03HqMNFa/V6nCTXVNXcuNuZVo/g\nSGBbVd1RVT8ALgJOmtK+JEljmNYcwUHA3X2vtwM/118hyRnAGd3L7ye5aUqxTNJ+wNdnHcQyGOdk\nrYU410KMMOU4886JbWettOczJrGRaSWCDCn7qTGoqtoCbAFIsnUS3ZtpM87JMs7JWQsxgnFOWpKJ\njKlPa2hoO3BI3+uDgXuntC9J0himlQj+HjgsyaFJ9gBOBS6f0r4kSWOYytBQVT2c5M3AJ4HdgPdV\n1c2LrLJlGnFMgXFOlnFOzlqIEYxz0iYS51S+PipJWju815AkNc5EIEmNW7FEkOSUJDcn+VGSuYFl\nb+tuRXFbkpctsP6hSa5OcnuSD3eT0NOO+cNJrusedya5boF6dya5sau34pdIJ/ndJPf0xXr8AvVm\netuPJH+U5NYkNyS5NMk+C9Rb8fZcqm2S7NmdD9u683DjSsQ1EMMhST6T5Jbu/9JbhtQ5OslDfefC\n76x0nF0cix7D9PxZ1543JHnBDGJ8Rl87XZfkm0neOlBnJu2Z5H1J7u+/virJvkmu6N4Dr0iyfoF1\nN3d1bk+yeVk7rKoVeQDPpHfxw2eBub7yw4HrgT2BQ4EvA7sNWf9i4NTu+XnAG1cq9m6ffwL8zgLL\n7gT2W8l4Bvb/u8B/WqLObl3bPg3Yo2vzw1c4zmOAdd3zdwLvXA3tuZy2Af4DcF73/FTgwzM4zgcC\nL+ie703vNi6DcR4NfGylY9vVYwgcD3yC3jVHRwFXzzje3YCvAU9dDe0JvBh4AXBTX9kfAmd1z88a\n9v8H2Be4o/u7vnu+fqn9rViPoKpuqarbhiw6Cbioqr5fVV8BttG7RcWPJQnwEuCSrugC4ORpxjtk\n/78MfGil9jkFM7/tR1V9qqoe7l5eRe/6ktVgOW1zEr3zDnrn4abuvFgxVbWjqq7tnn8LuIXeVfxr\n0UnAB6rnKmCfJAfOMJ5NwJer6qszjOHHqupzwDcGivvPwYXeA18GXFFV36iqB4ArgGOX2t9qmCMY\ndjuKwZP7ScCDfW8iw+pM0y8C91XV7QssL+BTSa7pbp0xC2/uutjvW6DLuJx2Xkmn0ftEOMxKt+dy\n2ubHdbrz8CF65+VMdENTzweuHrL455Ncn+QTSZ61ooH9xFLHcLWdj6ey8Ae91dCeAAdU1Q7ofSgA\n9h9SZ6R2neh1BEn+N/DkIYvOrqrLFlptSNngd1qXU2cky4z51SzeG3hhVd2bZH/giiS3dhl9YhaL\nEzgX+H16bfL79IaxThvcxJB1J/7d4eW0Z5KzgYeBCxfYzNTbc8BMz8FdleTxwEeAt1bVNwcWX0tv\neOPb3VzR3wCHrXSMLH0MV1N77gG8HHjbkMWrpT2Xa6R2nWgiqKqXjrDacm5H8XV6Xcd13aexid2y\nYqmYk6wDfgn4F4ts497u7/1JLqU31DDRN67ltm2SvwI+NmTRitz2YxntuRk4EdhU3aDmkG1MvT0H\nLKdtdtbZ3p0TT+SRXfepS7I7vSRwYVV9dHB5f2Koqo8n+Ysk+1XVit5AbRnHcDXdhuY44Nqqum9w\nwWppz859SQ6sqh3dMNr9Q+pspzevsdPB9OZlF7UahoYuB07tvpVxKL1s+/n+Ct0bxmeAV3VFm4GF\nehiT9lLg1qraPmxhkr2S7L3zOb0J0RW9k+rA2OorFtj/zG/7keRY4Ezg5VX13QXqzKI9l9M2l9M7\n76B3Hn56oUQ2Ld2cxPnALVX1pwvUefLOuYskR9L7P/4PKxflso/h5cDrum8PHQU8tHPYYwYW7PGv\nhvbs038OLvQe+EngmCTruyHiY7qyxa3gLPgr6GWr7wP3AZ/sW3Y2vW9t3AYc11f+ceAp3fOn0UsQ\n24D/Cey5QnG/H3jDQNlTgI/3xXV997iZ3hDISn/D4IPAjcAN3cly4GCc3evj6X3T5MszinMbvfHL\n67rHeYNxzqo9h7UN8Hv0khbAY7rzblt3Hj5tBu33Inrd/Bv62vB44A07z1HgzV27XU9vQv4XZhDn\n0GM4EGeAP+/a+0b6vkm4wrE+jt4b+xP7ymbenvQS0w7gh9375un05qSuBG7v/u7b1Z0D3tu37mnd\neboNeP1y9uctJiSpcathaEiSNEMmAklqnIlAkhpnIpCkxpkIJKlxJgJJapyJQJIa9/8B+rbuyM3h\nLnYAAAAASUVORK5CYII=\n"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display_png(x)\n",
|
||
"display_png(x2)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Note that like `print`, you can call any of the `display` functions multiple times in a cell."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Adding IPython display support to existing objects"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"When you are directly writing your own classes, you can adapt them for display in IPython by following the above approach. But in practice, you often need to work with existing classes that you can't easily modify. We now illustrate how to add rich output capabilities to existing objects. We will use the NumPy polynomials and change their default representation to be a formatted LaTeX expression."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"First, consider how a NumPy polynomial object renders by default:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Polynomial([ 1., 2., 3.], [-10., 10.], [-1, 1])"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"p = np.polynomial.Polynomial([1,2,3], [-10, 10])\n",
|
||
"p"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Next, define a function that pretty-prints a polynomial as a LaTeX string:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def poly_to_latex(p):\n",
|
||
" terms = ['%.2g' % p.coef[0]]\n",
|
||
" if len(p) > 1:\n",
|
||
" term = 'x'\n",
|
||
" c = p.coef[1]\n",
|
||
" if c!=1:\n",
|
||
" term = ('%.2g ' % c) + term\n",
|
||
" terms.append(term)\n",
|
||
" if len(p) > 2:\n",
|
||
" for i in range(2, len(p)):\n",
|
||
" term = 'x^%d' % i\n",
|
||
" c = p.coef[i]\n",
|
||
" if c!=1:\n",
|
||
" term = ('%.2g ' % c) + term\n",
|
||
" terms.append(term)\n",
|
||
" px = '$P(x)=%s$' % '+'.join(terms)\n",
|
||
" dom = r', $x \\in [%.2g,\\ %.2g]$' % tuple(p.domain)\n",
|
||
" return px+dom"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This produces, on our polynomial ``p``, the following:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'$P(x)=1+2 x+3 x^2$, $x \\\\in [-10,\\\\ 10]$'"
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"poly_to_latex(p)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"You can render this string using the `Latex` class:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$P(x)=1+2 x+3 x^2$, $x \\in [-10,\\ 10]$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Latex object>"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from IPython.display import Latex\n",
|
||
"Latex(poly_to_latex(p))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"However, you can configure IPython to do this automatically by registering the `Polynomial` class and the `poly_to_latex` function with an IPython display formatter. Let's look at the default formatters provided by IPython:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" text/plain : PlainTextFormatter\n",
|
||
" text/html : HTMLFormatter\n",
|
||
" text/markdown : MarkdownFormatter\n",
|
||
" image/svg+xml : SVGFormatter\n",
|
||
" image/png : PNGFormatter\n",
|
||
" application/pdf : PDFFormatter\n",
|
||
" image/jpeg : JPEGFormatter\n",
|
||
" text/latex : LatexFormatter\n",
|
||
" application/json : JSONFormatter\n",
|
||
" application/javascript : JavascriptFormatter\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"ip = get_ipython()\n",
|
||
"for mime, formatter in ip.display_formatter.formatters.items():\n",
|
||
" print('%24s : %s' % (mime, formatter.__class__.__name__))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The `formatters` attribute is a dictionary keyed by MIME types. To define a custom LaTeX display function, you want a handle on the `text/latex` formatter:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"ip = get_ipython()\n",
|
||
"latex_f = ip.display_formatter.formatters['text/latex']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The formatter object has a couple of methods for registering custom display functions for existing types."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Help on method for_type in module IPython.core.formatters:\n",
|
||
"\n",
|
||
"for_type(typ, func=None) method of IPython.core.formatters.LatexFormatter instance\n",
|
||
" Add a format function for a given type.\n",
|
||
" \n",
|
||
" Parameters\n",
|
||
" -----------\n",
|
||
" typ : type or '__module__.__name__' string for a type\n",
|
||
" The class of the object that will be formatted using `func`.\n",
|
||
" func : callable\n",
|
||
" A callable for computing the format data.\n",
|
||
" `func` will be called with the object to be formatted,\n",
|
||
" and will return the raw data in this formatter's format.\n",
|
||
" Subclasses may use a different call signature for the\n",
|
||
" `func` argument.\n",
|
||
" \n",
|
||
" If `func` is None or not specified, there will be no change,\n",
|
||
" only returning the current value.\n",
|
||
" \n",
|
||
" Returns\n",
|
||
" -------\n",
|
||
" oldfunc : callable\n",
|
||
" The currently registered callable.\n",
|
||
" If you are registering a new formatter,\n",
|
||
" this will be the previous value (to enable restoring later).\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"help(latex_f.for_type)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Help on method for_type_by_name in module IPython.core.formatters:\n",
|
||
"\n",
|
||
"for_type_by_name(type_module, type_name, func=None) method of IPython.core.formatters.LatexFormatter instance\n",
|
||
" Add a format function for a type specified by the full dotted\n",
|
||
" module and name of the type, rather than the type of the object.\n",
|
||
" \n",
|
||
" Parameters\n",
|
||
" ----------\n",
|
||
" type_module : str\n",
|
||
" The full dotted name of the module the type is defined in, like\n",
|
||
" ``numpy``.\n",
|
||
" type_name : str\n",
|
||
" The name of the type (the class name), like ``dtype``\n",
|
||
" func : callable\n",
|
||
" A callable for computing the format data.\n",
|
||
" `func` will be called with the object to be formatted,\n",
|
||
" and will return the raw data in this formatter's format.\n",
|
||
" Subclasses may use a different call signature for the\n",
|
||
" `func` argument.\n",
|
||
" \n",
|
||
" If `func` is None or unspecified, there will be no change,\n",
|
||
" only returning the current value.\n",
|
||
" \n",
|
||
" Returns\n",
|
||
" -------\n",
|
||
" oldfunc : callable\n",
|
||
" The currently registered callable.\n",
|
||
" If you are registering a new formatter,\n",
|
||
" this will be the previous value (to enable restoring later).\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"help(latex_f.for_type_by_name)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"In this case, we will use `for_type_by_name` to register `poly_to_latex` as the display function for the `Polynomial` type:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"latex_f.for_type_by_name('numpy.polynomial.polynomial',\n",
|
||
" 'Polynomial', poly_to_latex)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Once the custom display function has been registered, all NumPy `Polynomial` instances will be represented by their LaTeX form instead:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$P(x)=1+2 x+3 x^2$, $x \\in [-10,\\ 10]$"
|
||
],
|
||
"text/plain": [
|
||
"Polynomial([ 1., 2., 3.], [-10., 10.], [-1, 1])"
|
||
]
|
||
},
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"p"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$P(x)=-20+71 x+-15 x^2+x^3$, $x \\in [-1,\\ 1]$"
|
||
],
|
||
"text/plain": [
|
||
"Polynomial([-20., 71., -15., 1.], [-1, 1], [-1, 1])"
|
||
]
|
||
},
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"p2 = np.polynomial.Polynomial([-20, 71, -15, 1])\n",
|
||
"p2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Custom Mimetypes with `_repr_mimebundle_`\n",
|
||
"\n",
|
||
"Available on IPython 5.4+ and 6.1+.\n",
|
||
"\n",
|
||
"For objects needing full control over the `repr` protocol may decide to implement the `_repr_mimebundle_(include, exclude)` method.\n",
|
||
"Unlike the other `_repr_*_` methods must return many representation of the object in a mapping object which keys are _mimetypes_ and value are associated data. The `_repr_mimebundle_()` method, may also return a second mapping from _mimetypes_ to metadata. \n",
|
||
"\n",
|
||
"Example:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"class Gaussian(object):\n",
|
||
" \"\"\"A simple object holding data sampled from a Gaussian distribution.\n",
|
||
" \"\"\"\n",
|
||
" def __init__(self, mean=0.0, std=1, size=1000):\n",
|
||
" self.data = np.random.normal(mean, std, size)\n",
|
||
" self.mean = mean\n",
|
||
" self.std = std\n",
|
||
" self.size = size\n",
|
||
" # For caching plots that may be expensive to compute\n",
|
||
" self._png_data = None\n",
|
||
" \n",
|
||
" def _figure_data(self, format):\n",
|
||
" fig, ax = plt.subplots()\n",
|
||
" ax.hist(self.data, bins=50)\n",
|
||
" ax.set_xlim(-10.0,10.0)\n",
|
||
" data = print_figure(fig, format)\n",
|
||
" # We MUST close the figure, otherwise IPython's display machinery\n",
|
||
" # will pick it up and send it as output, resulting in a double display\n",
|
||
" plt.close(fig)\n",
|
||
" return data\n",
|
||
" \n",
|
||
" def _compute_mathml(self):\n",
|
||
" return \"\"\"\n",
|
||
" <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n",
|
||
" <mrow class=\"MJX-TeXAtom-ORD\">\n",
|
||
" <mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">N</mi>\n",
|
||
" </mrow>\n",
|
||
" <mo stretchy=\"false\">(</mo>\n",
|
||
" <mi>μ<!-- μ --></mi>\n",
|
||
" <mo>=</mo>\n",
|
||
" <mn>{mu}</mn>\n",
|
||
" <mo>,</mo>\n",
|
||
" <mi>σ<!-- σ --></mi>\n",
|
||
" <mo>=</mo>\n",
|
||
" <mn>{sigma}</mn>\n",
|
||
" <mo stretchy=\"false\">)</mo>\n",
|
||
" <mo>,</mo>\n",
|
||
" <mtext> </mtext>\n",
|
||
" <mi>N</mi>\n",
|
||
" <mo>=</mo>\n",
|
||
" <mn>{N}</mn>\n",
|
||
" </math>\n",
|
||
" \"\"\".format(N=self.size, mu=self.mean, sigma=self.std)\n",
|
||
" \n",
|
||
" def _repr_mimebundle_(self, include, exclude, **kwargs):\n",
|
||
" \"\"\"\n",
|
||
" repr_mimebundle should accept include, exclude and **kwargs\n",
|
||
" \"\"\"\n",
|
||
" if self._png_data is None:\n",
|
||
" self._png_data = self._figure_data('png')\n",
|
||
" math = r'$\\mathcal{N}(\\mu=%.2g, \\sigma=%.2g),\\ N=%d$' % (self.mean,\n",
|
||
" self.std, self.size)\n",
|
||
" data = {'image/png':self._png_data,\n",
|
||
" 'text/latex':math,\n",
|
||
" 'application/mathml+xml': self._compute_mathml()\n",
|
||
" }\n",
|
||
" if include:\n",
|
||
" data = {k:v for (k,v) in data.items() if k in include}\n",
|
||
" if exclude:\n",
|
||
" data = {k:v for (k,v) in data.items() if k not in exclude}\n",
|
||
" return data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/mathml+xml": "\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mrow class=\"MJX-TeXAtom-ORD\">\n <mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">N</mi>\n </mrow>\n <mo stretchy=\"false\">(</mo>\n <mi>μ<!-- μ --></mi>\n <mo>=</mo>\n <mn>0.0</mn>\n <mo>,</mo>\n <mi>σ<!-- σ --></mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo stretchy=\"false\">)</mo>\n <mo>,</mo>\n <mtext> </mtext>\n <mi>N</mi>\n <mo>=</mo>\n <mn>1000</mn>\n </math>\n ",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD8CAYAAACW/ATfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEftJREFUeJzt3X+MZWddx/H3x5aCQKVbOi0LZd2SNBU0oS2TBkUNsvwo\nlLDFUFJidIWaFQ0EYowskhgV/1g0/kxUstLKahBaCrUbWn6sSwkx0cK2tKVlW7etS1m77C4/SlES\ntPL1j3sWx/FO587cc++d2ef9Sib3nHPPueeb55753Geee86ZVBWSpJPbD8y6AEnS5Bn2ktQAw16S\nGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAacOs2dnXXWWbV58+Zp7lKS1r3bbrvta1U1N85r\nTDXsN2/ezP79+6e5S0la95J8edzXcBhHkhpg2EtSA5YN+yQXJLljwc+jSd6e5Mwke5Mc7B43TKNg\nSdLKLRv2VXVfVV1YVRcCLwC+A9wA7AD2VdX5wL5uXpK0Bq10GGcL8EBVfRnYCuzulu8GLu+zMElS\nf1Ya9lcCH+ymz6mqIwDd49l9FiZJ6s/IYZ/kNOA1wIdXsoMk25PsT7L/+PHjK61PktSDlfTsXwnc\nXlVHu/mjSTYCdI/Hhm1UVbuqar6q5ufmxromQJK0SisJ+zfwv0M4AHuAbd30NuDGvoqSJPVrpCto\nkzwZeBnwywsW7wSuS3IV8BBwRf/lSbO3ecdN358+tPOyGVYird5IYV9V3wGevmjZ1xmcnSNJWuO8\nglaSGmDYS1IDDHtJaoBhL0kNmOr97KW1xjNt1Ap79pLUAMNekhpg2EtSAwx7SWqAYS9JDTDsJakB\nhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9JDXAsJekBowU9knOSHJ9knuT\nHEjy40nOTLI3ycHuccOki5Ukrc6oPfs/BT5RVT8CPB84AOwA9lXV+cC+bl6StAYtG/ZJfgj4aeBq\ngKr6z6p6BNgK7O5W2w1cPqkiJUnjGaVn/xzgOPDXSb6Q5H1JngKcU1VHALrHsydYpyRpDKOE/anA\nxcBfVtVFwH+wgiGbJNuT7E+y//jx46ssU5I0jlHC/jBwuKpu7eavZxD+R5NsBOgejw3buKp2VdV8\nVc3Pzc31UbMkaYWWDfuq+irwlSQXdIu2AF8C9gDbumXbgBsnUqEkaWynjrjeW4EPJDkNeBB4I4MP\niuuSXAU8BFwxmRIlSeMaKeyr6g5gfshTW/otR5I0CV5BK0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNe\nkhpg2EtSAwx7SWqAYS9JDTDsJakBo94bRzopbN5x06xLkGbCnr0kNcCwl6QGGPaS1ADDXpIaYNhL\nUgMMe2mRzTtu8qwdnXQMe0lqgGEvSQ0w7CWpAYa9JDVgpNslJDkEfBv4b+CxqppPciZwLbAZOAS8\nvqq+OZkyJUnjWEnP/meq6sKqmu/mdwD7qup8YF83L0lag8YZxtkK7O6mdwOXj1+OJGkSRg37Aj6V\n5LYk27tl51TVEYDu8exJFChJGt+otzh+UVU9nORsYG+Se0fdQffhsB1g06ZNqyhRkjSukXr2VfVw\n93gMuAG4BDiaZCNA93hsiW13VdV8Vc3Pzc31U7UkaUWWDfskT0ly+olp4OXA3cAeYFu32jbgxkkV\nKUkazyjDOOcANyQ5sf7fVdUnknweuC7JVcBDwBWTK1OaPu+Po5PJsmFfVQ8Czx+y/OvAlkkUJUnq\nl1fQSlIDDHtJaoBhL0kNMOwlqQGjXlQlrTsLz6Y5tPOyGVYizZ49e0lqgGEvSQ0w7CWpAYa9JDXA\nsJekBhj2ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvbQCm3fc5H+w0rpk2EtSAwx7SWqAYS9J\nDTDsJakBI4d9klOSfCHJx7r585LcmuRgkmuTnDa5MiVJ41hJz/5twIEF8+8B/riqzge+CVzVZ2GS\npP6MFPZJzgUuA97XzQd4CXB9t8pu4PJJFChJGt+oPfs/AX4D+F43/3Tgkap6rJs/DDyr59okST1Z\n9h+OJ3k1cKyqbkvy4hOLh6xaS2y/HdgOsGnTplWWKY3HC6HUulF69i8CXpPkEPAhBsM3fwKckeTE\nh8W5wMPDNq6qXVU1X1Xzc3NzPZQsSVqpZcO+qt5ZVedW1WbgSuDTVfVzwC3A67rVtgE3TqxKSdJY\nxjnP/h3AryW5n8EY/tX9lCRJ6tuyY/YLVdVngM900w8Cl/RfkiSpb15BK0kNMOwlqQGGvSQ1wLCX\npAas6Ata6WTmhVc6mdmzl6QGGPaS1ACHcaQeLRwKOrTzshlWIv1f9uwlqQGGvSQ1wLCXxrB5x02e\nxaN1wbCXpAYY9pLUAM/G0UnHYRXp/7NnL0kNMOwlqQEO42hdGnbxksM30tLs2UtSAwx7SWqAwzjS\nKjhkpPXGnr0kNWDZsE/ypCSfS3JnknuS/E63/LwktyY5mOTaJKdNvlxJ0mqM0rP/LvCSqno+cCFw\naZIXAu8B/riqzge+CVw1uTIlSeNYNuxr4N+72Sd0PwW8BLi+W74buHwiFUqSxjbSmH2SU5LcARwD\n9gIPAI9U1WPdKoeBZ02mREnSuEYK+6r676q6EDgXuAR47rDVhm2bZHuS/Un2Hz9+fPWVSpJWbUVn\n41TVI8BngBcCZyQ5cermucDDS2yzq6rmq2p+bm5unFolSas0ytk4c0nO6KZ/EHgpcAC4BXhdt9o2\n4MZJFSlJGs8oF1VtBHYnOYXBh8N1VfWxJF8CPpTk94AvAFdPsE5p3Tlx4ZX/eFxrwbJhX1V3ARcN\nWf4gg/F7SdIa5xW0ktQAw16SGmDYS1IDDHtJaoBhL0kNMOwlqQGGvSQ1wLCXpAYY9pLUAMNekhrg\nPxzXuuc//5aWZ89ekhpg2EtSAxzG0brikI20OvbsJakBhr0kNcCwl6QGGPaS1ADDXpIaYNhLUgMM\ne0lqwLJhn+TZSW5JciDJPUne1i0/M8neJAe7xw2TL1eStBqpqsdfIdkIbKyq25OcDtwGXA78IvCN\nqtqZZAewoare8XivNT8/X/v37++ncjXlZLiY6tDOy2ZdgtapJLdV1fw4r7Fsz76qjlTV7d30t4ED\nwLOArcDubrXdDD4AJElr0IrG7JNsBi4CbgXOqaojMPhAAM7uuzhJUj9GvjdOkqcCHwHeXlWPJhl1\nu+3AdoBNmzatpkY1ZuGQjUMfUj9G6tkneQKDoP9AVX20W3y0G88/Ma5/bNi2VbWrquaran5ubq6P\nmiVJKzTK2TgBrgYOVNUfLXhqD7Ctm94G3Nh/eZKkPowyjPMi4OeBLya5o1v2m8BO4LokVwEPAVdM\npkRJ0riWDfuq+kdgqQH6Lf2WI0maBK+glaQGGPaS1ADDXpIaYNhLUgMMe0lqgGEvSQ0w7CWpAYa9\nJDXAsJekBhj2ktQAw16aks07bjop/uOW1ifDXpIaYNhLUgMMe2mGHNrRtBj2ktQAw16SGjDyPxyX\n1A+HbTQL9uwlqQGGvSQ1wGEcrWkOeUj9sGcvSQ1YNuyTXJPkWJK7Fyw7M8neJAe7xw2TLVOSNI5R\nevbvBy5dtGwHsK+qzgf2dfOSVsmLqzRpy4Z9VX0W+MaixVuB3d30buDynuuSJPVotWP251TVEYDu\n8ez+SpIk9W3iX9Am2Z5kf5L9x48fn/TuJElDrDbsjybZCNA9HltqxaraVVXzVTU/Nze3yt1Jksax\n2rDfA2zrprcBN/ZTjiRpEkY59fKDwD8BFyQ5nOQqYCfwsiQHgZd185KkNWrZK2ir6g1LPLWl51ok\nSRPiFbSS1ADvjaM1w4uKpMmxZy9JDTDsJakBDuNoZhy2kabHnr0kNcCwl6QGGPaS1ADDXpIaYNhL\nUgMMe2kN8T9WaVIMe0lqgGEvSQ3woipN1IkhiUM7L/s/85Kmy569JDXAsJekBjiMo94sHKI5MWyj\n1VlpWy4eLpMWs2cvSQ0w7CWpAQ7jaMUcMpiuxWcweWaTVsOevSQ1YKywT3JpkvuS3J9kR19FSZL6\ntephnCSnAH8OvAw4DHw+yZ6q+lJfxWn9cohhckZp22FDbQ6/tW2cnv0lwP1V9WBV/SfwIWBrP2VJ\nkvo0Ttg/C/jKgvnD3TJJ0hqTqlrdhskVwCuq6pe6+Z8HLqmqty5abzuwvZv9MeDu1Zc7NWcBX5t1\nESNYD3WuhxrBOvtmnf26oKpOH+cFxjn18jDw7AXz5wIPL16pqnYBuwCS7K+q+TH2ORXW2Z/1UCNY\nZ9+ss19J9o/7GuMM43weOD/JeUlOA64E9oxbkCSpf6vu2VfVY0neAnwSOAW4pqru6a0ySVJvxrqC\ntqpuBm5ewSa7xtnfFFlnf9ZDjWCdfbPOfo1d56q/oJUkrR/eLkGSGtB72Ce5Isk9Sb6XZH7Rc+/s\nbq1wX5JXLLH9eUluTXIwybXdl78T1e3nju7nUJI7lljvUJIvduuN/e34Kur87ST/tqDWVy2x3sxu\nY5HkD5Lcm+SuJDckOWOJ9WbSlsu1TZIndsfD/d1xuHlatS2o4dlJbklyoPtdetuQdV6c5FsLjoXf\nmnadXR2P+z5m4M+69rwrycUzqPGCBe10R5JHk7x90Tozac8k1yQ5luTuBcvOTLK3y8C9STYsse22\nbp2DSbYtu7Oq6vUHeC5wAfAZYH7B8ucBdwJPBM4DHgBOGbL9dcCV3fR7gV/pu8Zl6v9D4LeWeO4Q\ncNY061m0/98Gfn2ZdU7p2vY5wGldmz9vijW+HDi1m34P8J610pajtA3wq8B7u+krgWtn8D5vBC7u\npk8H/mVInS8GPjbt2lb6PgKvAj4OBHghcOuM6z0F+Crww2uhPYGfBi4G7l6w7PeBHd30jmG/Q8CZ\nwIPd44ZuesPj7av3nn1VHaiq+4Y8tRX4UFV9t6r+FbifwS0Xvi9JgJcA13eLdgOX913jUrr9vx74\n4LT2OQEzvY1FVX2qqh7rZv+ZwfUXa8UobbOVwXEHg+NwS3dcTE1VHamq27vpbwMHWL9Xp28F/qYG\n/hk4I8nGGdazBXigqr48wxq+r6o+C3xj0eKFx+BSGfgKYG9VfaOqvgnsBS59vH1Nc8x+lNsrPB14\nZEFYTPsWDD8FHK2qg0s8X8CnktzWXRk8C2/p/hy+Zok/79bSbSzexKBXN8ws2nKUtvn+Ot1x+C0G\nx+VMdMNIFwG3Dnn6x5PcmeTjSX50qoX9r+Xex7V0PMLgr7WlOnNroT0BzqmqIzD44AfOHrLOitt1\nVadeJvkH4BlDnnpXVd241GZDli0+FWiUdVZlxJrfwOP36l9UVQ8nORvYm+Te7pO5N49XJ/CXwLsZ\ntMm7GQw5vWnxSwzZttdTrkZpyyTvAh4DPrDEy0y8LYeY6TG4UkmeCnwEeHtVPbro6dsZDEX8e/fd\nzd8D50+7RpZ/H9dSe54GvAZ455Cn10p7jmrF7bqqsK+ql65is1Fur/A1Bn/mndr1qobegmE1lqs5\nyanAzwIveJzXeLh7PJbkBgbDAr0G1Khtm+SvgI8NeWqk21iMY4S23Aa8GthS3QDjkNeYeFsOMUrb\nnFjncHdMPI3//2f2xCV5AoOg/0BVfXTx8wvDv6puTvIXSc6qqqne52WE93Hix+MKvBK4vaqOLn5i\nrbRn52iSjVV1pBvyOjZkncMMvmc44VwG35MuaZrDOHuAK7uzHc5j8Kn5uYUrdMFwC/C6btE2YKm/\nFPr2UuDeqjo87MkkT0ly+olpBl9ETvWmbovGOl+7xP5nehuLJJcC7wBeU1XfWWKdWbXlKG2zh8Fx\nB4Pj8NNLfWBNSvcdwdXAgar6oyXWecaJ7xKSXMLgd/nr06ty5PdxD/AL3Vk5LwS+dWKIYgaW/Mt9\nLbTnAguPwaUy8JPAy5Ns6IZzX94tW9oEvl1+LYNPne8CR4FPLnjuXQzOhrgPeOWC5TcDz+ymn8Pg\nQ+B+4MPAE/uucYm63w+8edGyZwI3L6jrzu7nHgZDFtP+5v5vgS8Cd3UHxMbFdXbzr2JwBscD066z\ne9++AtzR/bx3cY2zbMthbQP8LoMPJ4Andcfd/d1x+JwZvM8/yeBP8rsWtOOrgDefOEaBt3RtdyeD\nL8J/YgZ1Dn0fF9UZBv/k6IHu2J2fdp1dHU9mEN5PW7Bs5u3J4MPnCPBfXW5exeA7on3Awe7xzG7d\neeB9C7Z9U3ec3g+8cbl9eQWtJDXAK2glqQGGvSQ1wLCXpAYY9pLUAMNekhpg2EtSAwx7SWqAYS9J\nDfgfS9fLKUqMYTsAAAAASUVORK5CYII=\n",
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=0, \\sigma=1),\\ N=1000$"
|
||
],
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x11a614e80>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# that is definitively wrong as it should show the PNG. \n",
|
||
"display(Gaussian())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"In the above example, the 3 mimetypes are embedded in the notebook document this allowing custom extensions and converters to display the representation(s) of their choice.\n",
|
||
"\n",
|
||
"For example, converting this noetebook to _epub_ may decide to use the MathML representation as most ebook reader cannot run mathjax (unlike browsers). \n",
|
||
"\n",
|
||
"\n",
|
||
"### Implementation guidelines\n",
|
||
"\n",
|
||
"The `_repr_mimebundle_` methods is also given two keywords parameters : `include` and `exclude`. Each can be a containers (e.g.:`list`, `set` ...) of mimetypes to return or `None`, This allows implementation to avoid computing potentially unnecessary and expensive mimetypes representations. \n",
|
||
"\n",
|
||
"When `include` is non-empty (empty `list` or None), `_repr_mimebundle_` may decide to returns only the mimetypes in include.\n",
|
||
"When `exclude` is non-empty, `_repr_mimebundle_` may decide to not return any mimetype in exclude. \n",
|
||
"If both `include` and `exclude` and overlap, mimetypes present in exclude may not be returned. \n",
|
||
"\n",
|
||
"If implementations decide to ignore the `include` and `exclude` logic and always returns a full mimebundles, the IPython kernel will take care of removing non-desired representations.\n",
|
||
"\n",
|
||
"The `_repr_mimebundle_` method should accept arbitrary keyword arguments for future compatiility.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=0, \\sigma=1),\\ N=1000$"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display(Gaussian(), include={'text/latex'}) # only show latex"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/mathml+xml": "\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mrow class=\"MJX-TeXAtom-ORD\">\n <mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">N</mi>\n </mrow>\n <mo stretchy=\"false\">(</mo>\n <mi>μ<!-- μ --></mi>\n <mo>=</mo>\n <mn>0.0</mn>\n <mo>,</mo>\n <mi>σ<!-- σ --></mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo stretchy=\"false\">)</mo>\n <mo>,</mo>\n <mtext> </mtext>\n <mi>N</mi>\n <mo>=</mo>\n <mn>1000</mn>\n </math>\n ",
|
||
"text/latex": [
|
||
"$\\mathcal{N}(\\mu=0, \\sigma=1),\\ N=1000$"
|
||
],
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x116fe7550>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display(Gaussian(), exclude={'image/png'}) # exclude png"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<__main__.Gaussian at 0x11a8a0b38>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"display(Gaussian(), include={'text/plain', 'image/png'}, exclude={'image/png'}) # keep only plain/text"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## More complex display with `_ipython_display_`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Rich output special methods and functions can only display one object or MIME type at a time. Sometimes this is not enough if you want to display multiple objects or MIME types at once. An example of this would be to use an HTML representation to put some HTML elements in the DOM and then use a JavaScript representation to add events to those elements.\n",
|
||
"\n",
|
||
"**IPython 2.0** recognizes another display method, `_ipython_display_`, which allows your objects to take complete control of displaying themselves. If this method is defined, IPython will call it, and make no effort to display the object using the above described `_repr_*_` methods for custom display functions. It's a way for you to say \"Back off, IPython, I can display this myself.\" Most importantly, your `_ipython_display_` method can make multiple calls to the top-level `display` functions to accomplish its goals.\n",
|
||
"\n",
|
||
"Here is an object that uses `display_html` and `display_javascript` to make a plot using the [Flot](http://www.flotcharts.org/) JavaScript plotting library:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import json\n",
|
||
"import uuid\n",
|
||
"from IPython.display import display_javascript, display_html, display\n",
|
||
"\n",
|
||
"class FlotPlot(object):\n",
|
||
" def __init__(self, x, y):\n",
|
||
" self.x = x\n",
|
||
" self.y = y\n",
|
||
" self.uuid = str(uuid.uuid4())\n",
|
||
" \n",
|
||
" def _ipython_display_(self):\n",
|
||
" json_data = json.dumps(list(zip(self.x, self.y)))\n",
|
||
" display_html('<div id=\"{}\" style=\"height: 300px; width:80%;\"></div>'.format(self.uuid),\n",
|
||
" raw=True\n",
|
||
" )\n",
|
||
" display_javascript(\"\"\"\n",
|
||
" require([\"//cdnjs.cloudflare.com/ajax/libs/flot/0.8.2/jquery.flot.min.js\"], function() {\n",
|
||
" var line = JSON.parse(\"%s\");\n",
|
||
" console.log(line);\n",
|
||
" $.plot(\"#%s\", [line]);\n",
|
||
" });\n",
|
||
" \"\"\" % (json_data, self.uuid), raw=True)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div id=\"c6929609-3cb6-4443-9574-d9f71791a987\" style=\"height: 300px; width:80%;\"></div>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/javascript": [
|
||
"\n",
|
||
" require([\"//cdnjs.cloudflare.com/ajax/libs/flot/0.8.2/jquery.flot.min.js\"], function() {\n",
|
||
" var line = JSON.parse(\"[[0.0, 0.0], [0.20408163265306123, 0.20266793654820095], [0.40816326530612246, 0.39692414892492234], [0.6122448979591837, 0.5747060412161791], [0.8163265306122449, 0.7286347834693503], [1.0204081632653061, 0.8523215697196184], [1.2244897959183674, 0.9406327851124867], [1.4285714285714286, 0.9899030763721239], [1.6326530612244898, 0.9980874821347183], [1.836734693877551, 0.9648463089837632], [2.0408163265306123, 0.8915592304110037], [2.2448979591836737, 0.7812680235262639], [2.4489795918367347, 0.6385503202266021], [2.6530612244897958, 0.469329612777201], [2.857142857142857, 0.28062939951435684], [3.0612244897959187, 0.0802816748428135], [3.2653061224489797, -0.12339813736217871], [3.4693877551020407, -0.3219563150726187], [3.673469387755102, -0.5071517094845144], [3.8775510204081636, -0.6712977935519321], [4.081632653061225, -0.8075816909683364], [4.285714285714286, -0.9103469443107828], [4.4897959183673475, -0.9753282860670456], [4.6938775510204085, -0.9998286683840896], [4.8979591836734695, -0.9828312039256306], [5.1020408163265305, -0.9250413717382029], [5.3061224489795915, -0.8288577363730427], [5.510204081632653, -0.6982723955653996], [5.714285714285714, -0.5387052883861563], [5.918367346938775, -0.35677924089893803], [6.122448979591837, -0.16004508604325057], [6.326530612244898, 0.04333173336868346], [6.530612244897959, 0.2449100710119793], [6.73469387755102, 0.4363234264718193], [6.938775510204081, 0.6096271964908323], [7.142857142857143, 0.7576284153927202], [7.346938775510204, 0.8741842988197335], [7.551020408163265, 0.9544571997387519], [7.755102040816327, 0.9951153947776636], [7.959183673469388, 0.9944713672636168], [8.16326530612245, 0.9525518475314604], [8.36734693877551, 0.8710967034823207], [8.571428571428571, 0.7534867274396376], [8.775510204081632, 0.6046033165061543], [8.979591836734695, 0.43062587038273736], [9.183673469387756, 0.23877531564403087], [9.387755102040817, 0.03701440148506237], [9.591836734693878, -0.1662827938487564], [9.795918367346939, -0.3626784288265488], [10.0, -0.5440211108893699]]\");\n",
|
||
" console.log(line);\n",
|
||
" $.plot(\"#c6929609-3cb6-4443-9574-d9f71791a987\", [line]);\n",
|
||
" });\n",
|
||
" "
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"x = np.linspace(0,10)\n",
|
||
"y = np.sin(x)\n",
|
||
"FlotPlot(x, np.sin(x))"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.0"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 1
|
||
}
|