freelance-project-34-market.../python/tasks/tiktok/tasks.py
2024-07-07 12:53:53 +03:00

498 lines
13 KiB
Python

import logging
import collections
import enum
import dataclasses
import dataclasses_json
import multiprocessing
import traceback
import subprocess
import os
import sys
import json
from typing import (
Any,
Literal,
Optional,
Callable,
Iterable,
)
import celery
from .config import tiktok_config, logger_setup
from .utils import Task, shared_task
logger = logger_setup(__name__)
#logging.getLogger().setLevel(logging.INFO)
@shared_task()
async def tiktok_videos_links_get(
query: Optional[str]=None,
screenshot_path: Optional[str]=None,
max_time: Optional[int | float]=None,
max_links: Optional[int]=None,
) -> Iterable[str]:
import datetime
import TikTokApi
import pyktok
import asyncio
import re
if max_links is None:
max_links = 100
if max_time is None:
max_time = 10
async with TikTokApi.TikTokApi() as client:
await client.create_sessions()
session = client.sessions[0]
if not query is None:
await session.page.goto(
'https://www.tiktok.com/search?q=%s' % query
)
if not screenshot_path is None:
await session.page.screenshot(
path=screenshot_path,
)
links = list()
links_set = set()
started_at = datetime.datetime.now()
while True:
content = await session.page.content()
new_links = re.compile(
r'https://www.tiktok.com/@\w+/video/\d+'
).findall(content)
old_size = len(links)
for o in new_links:
if not o in links_set:
links_set.add(o)
links.append(o)
await session.page.mouse.wheel(0, 100)
elapsed = (
datetime.datetime.now() - started_at
).total_seconds()
if elapsed > max_time:
break;
if len(links_set) > max_links:
break
if old_size < len(links):
logger.info(json.dumps(dict(
total=len(links),
elapsed=elapsed,
scroll_y=await session.page.evaluate('window.scrollY'),
)))
return list(links)[:max_links]
@shared_task()
def tiktok_videos_meta(links: Iterable[str]) -> Iterable[dict[str, Any]]:
res = []
for o in links:
parts = o.split('/')
res.append(dict(
url=o,
id=int(parts[-1]),
fname='_'.join(parts[-3:]) +'.mp4',
result_dir=tiktok_config().videos,
))
return res
class tiktok_video_fetch_t:
class method_t(enum.Enum):
pyktok = 'pyktok'
tikcdn_io_curl = 'tikcdn.io-curl'
tikcdn_io_wget = 'tikcdn.io-wget'
@shared_task()
def tiktok_video_fetch(
id: int,
url: str,
fname: str,
result_dir: str,
method: Optional[tiktok_video_fetch_t.method_t]=None,
method_str: Optional[str]=None,
) -> None:
os.chdir(result_dir)
if not method_str is None:
method = tiktok_video_fetch_t.method_t(method_str)
if method is None:
method = tiktok_video_fetch_t.method_t.pyktok
if method == tiktok_video_fetch_t.method_t.pyktok:
import pyktok
pyktok.save_tiktok(url)
elif method == tiktok_video_fetch_t.method_t.tikcdn_io_curl:
subprocess.check_call([
'curl',
'-v',
'https://tikcdn.io/ssstik/%d' % id,
'-o', fname,
])
elif method == tiktok_video_fetch_t.method_t.tikcdn_io_wget:
subprocess.check_call([
'wget',
'https://tikcdn.io/ssstik/%d' % id,
'-O',
fname,
])
else:
raise NotImplementedError
mime_type = file_mime_type(fname)
if mime_type in ['empty']:
raise RuntimeError('notdownloaded')
def file_mime_type(path: str) -> Optional[str]:
if os.path.exists(path):
mime_type = subprocess.check_output([
'file',
'-b', path,
]).strip().decode('utf-8')
return mime_type
else:
return None
async def playwright_save(url: str):
import TikTokApi
async with TikTokApi.TikTokApi() as client:
await client.create_sessions()
session = client.sessions[0]
page = session.page
async with page.expect_download() as download_info:
await page.goto(url)
download = download_info.value
path = download.path()
download.save_as(path)
print(path)
@shared_task()
def tiktok_videos_fetch(
meta: Iterable[dict[str, Any]],
method: Optional[tiktok_video_fetch_t.method_t]=None,
method_str: Optional[str]=None,
force: Optional[bool]=None,
) -> Iterable[dict[str, Any]]:
import tqdm
if force is None:
force = False
stats = dict(
saved=0,
total=0,
skipped=0,
error=0,
)
for o in tqdm.tqdm(meta):
stats['total'] += 1
path = os.path.join(
o['result_dir'],
o['fname'],
)
if (
not os.path.exists(path) or
file_mime_type(path) in ['empty'] or
force
):
try:
tiktok_video_fetch.s(
id=o['id'],
url=o['url'],
fname=o['fname'],
method=method,
method_str=method_str,
result_dir=o['result_dir'],
).apply_async().get(disable_sync_subtasks=False,)
stats['saved'] += 1
except KeyboardInterrupt:
break
except:
logger.error(json.dumps(dict(
msg=traceback.format_exc(),
)))
stats['error'] += 1
else:
stats['skipped'] += 1
return stats
class tiktok_videos_process_t:
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class res_t:
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class stats_t:
saved: int=0
total: int=0
skipped: int=0
error: int=0
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class video_t:
meta: Optional[dict[str, Any]]=None
processed_path: Optional[str]=None
stats: stats_t=dataclasses.field(default_factory=stats_t)
videos: Iterable[video_t]=dataclasses.field(default_factory=list)
@shared_task()
def tiktok_videos_process(meta: Iterable[dict[str, Any]]) -> dict[str, Any]:
import tqdm
res = tiktok_videos_process_t.res_t(
videos=[],
)
song = audio_get()
for o in tqdm.tqdm(meta):
res.stats.total += 1
res.videos.append(tiktok_videos_process_t.res_t.video_t())
res.videos[-1].meta = o
path = os.path.join(
o['result_dir'],
o['fname'],
)
try:
path_parts = os.path.splitext(path)
processed_path = path_parts[0] + '-proc' + path_parts[1]
processed_path_tmp = path_parts[0] + '-proc.tmp' + path_parts[1]
if os.path.exists(processed_path):
res.videos[-1].processed_path = processed_path
if not os.path.exists(path) or os.path.exists(processed_path):
res.stats.skipped += 1
continue
if os.path.exists(processed_path_tmp):
os.unlink(processed_path_tmp)
ffmpeg = [
'ffmpeg',
'-i', path,
'-i', song.path_mp3,
'-shortest',
'-vf',
','.join([
'setpts=1.1*PTS',
'scale=trunc(iw/0.9):trunc(ow/a/2)*2',
]),
'-sws_flags', 'bilinear',
'-map', '0:v:0',
'-map', '1:a:0',
processed_path_tmp,
]
subprocess.check_call(
ffmpeg,
stdin=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
stdout=subprocess.DEVNULL
)
os.rename(processed_path_tmp, processed_path)
if os.path.exists(processed_path):
res.videos[-1].processed_path = processed_path
res.stats.saved += 1
except KeyboardInterrupt:
break
except:
logger.error(json.dumps(dict(
msg=traceback.format_exc(),
)))
res.stats.error += 1
return res
class audio_get_t:
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class res_t:
file: str
file_mp3: str
path: str
path_mp3: str
url: str
@shared_task()
def audio_get() -> audio_get_t.res_t:
c = tiktok_config()
url = 'https://www.youtube.com/watch?v=dQw4w9WgXcQ'
file = 'song.dat'
file_mp3 = 'song.mp3'
path = os.path.join(c.audios, file)
path_mp3 = os.path.join(c.audios, file_mp3)
if not os.path.exists(path):
subprocess.check_call([
'yt-dlp',
'-f', 'bestaudio',
url,
'-o', path,
])
if not os.path.exists(path_mp3):
subprocess.check_call([
'ffmpeg',
'-i', path,
path_mp3,
])
return audio_get_t.res_t(
file=file,
file_mp3=file_mp3,
path=path,
path_mp3=path_mp3,
url=url,
)
class process_graph_t:
@dataclasses_json.dataclass_json
@dataclasses.dataclass
class res_t:
ordered_nodes: Iterable[str]=dataclasses.field(default_factory=list)
done_ids: Iterable[str]=dataclasses.field(default_factory=set)
error_ids: Iterable[str]=dataclasses.field(default_factory=set)
task_ids: dict[str, str]=dataclasses.field(default_factory=dict)
pending_ids: Iterable[str]=dataclasses.field(default_factory=set)
done_tasks: Iterable[celery.result.AsyncResult]=dataclasses.field(default_factory=dict)
@shared_task()
def process_graph(
nodes: dict[str, Any],
data_deps: dict[str, Iterable[str]],
data_preproc: dict[str, Callable[Any, Any]],
execution_deps: dict[str, Iterable[str]],
) -> process_graph_t.res_t:
import networkx
g_data = networkx.DiGraph()
g_execution = networkx.DiGraph()
for v in nodes:
g_data.add_node(v)
g_execution.add_node(v)
for b, deps in data_deps.items():
for a in deps:
g_data.add_edge(a, b)
g_execution.add_edge(a, b)
for b, deps in execution_deps.items():
for a in deps:
g_execution.add_edge(a, b)
task_ids = dict()
done_ids = set()
error_ids = set()
pending_ids = set()
active_queue = collections.deque()
ordered_nodes = list(networkx.topological_sort(g_execution))
node_id = 0
def wait_task() -> bool:
task_id = active_queue.popleft()
task = celery.result.AsyncResult(task_id)
try:
task.wait()
if task.status == celery.states.SUCCESS:
done_ids.add(task_id)
return True
except:
error_ids.add(task_id)
logger.error(json.dumps(dict(
msg=traceback.format_exc(),
)))
return False
finally:
pending_ids.remove(task_id)
while node_id < len(ordered_nodes) or len(pending_ids) > 0:
if node_id < len(ordered_nodes):
node = ordered_nodes[node_id]
else:
node = None
if (
(len(pending_ids) > 0 and node_id == len(ordered_nodes)) or
any([
v in task_ids and task_ids[v] in pending_ids
for v in g_execution.predecessors(node)
])
):
if wait_task():
continue
else:
break
else:
args = [
celery.result.AsyncResult(
task_ids[v]
).result
for v in data_deps.get(node, tuple())
]
kwargs = dict()
if node in data_preproc:
args, kwargs = data_preproc[node](
nodes[node],
*args
)
task = nodes[node].clone(args=args, kwargs=kwargs).apply_async()
task_ids[node] = task.id
pending_ids.add(task.id)
active_queue.append(task.id)
del args
del task
node_id += 1
return process_graph_t.res_t(
ordered_nodes=ordered_nodes,
done_ids=done_ids,
done_tasks={
k : celery.result.AsyncResult(task_ids[k])
for k in nodes
if task_ids.get(k) in done_ids
},
task_ids=task_ids,
error_ids=error_ids,
pending_ids=pending_ids,
)