64 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import xarray
 | |
| import json
 | |
| import glob
 | |
| import io
 | |
| import os
 | |
| import pandas
 | |
| import pickle
 | |
| 
 | |
| def kernel_1():
 | |
|     t4 = 'kernel_1-t3.dat'
 | |
| 
 | |
|     def preprocess(t4):
 | |
|         t1 = '/kaggle/input/mlb-player-digital-engagement-forecasting'
 | |
|         t2 = glob.glob(
 | |
|             os.path.join(
 | |
|                 t1,
 | |
|                 '*.csv'
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         t3 = {
 | |
|             o : pandas.read_csv(o).to_xarray()
 | |
|             for o in t2
 | |
|         }
 | |
| 
 | |
|         with io.open(t4, 'wb') as f:
 | |
|             pickle.dump(t3, f)
 | |
| 
 | |
|     if not os.path.exists(t4):
 | |
|         preprocess(t4=t4)
 | |
| 
 | |
|     with io.open(t4, 'rb') as f:
 | |
|         t3 = pickle.load(f)
 | |
| 
 | |
| 
 | |
|     return dict(
 | |
|         t3=t3,
 | |
|     )
 | |
| 
 | |
| def kernel_2(o_1):
 | |
|     t2 = '/kaggle/input/mlb-player-digital-engagement-forecasting/train.csv'
 | |
|     t1 = {
 | |
|         k : pandas.DataFrame(
 | |
|             sum(
 | |
|                 [
 | |
|                     json.loads(o)
 | |
|                     for o in o_1['t3'][t2][k].values
 | |
|                     if isinstance(o, str)
 | |
|                 ],
 | |
|                 []
 | |
|             )
 | |
|         ).to_xarray()
 | |
|         for k in [
 | |
|             'playerTwitterFollowers',
 | |
|             'teamTwitterFollowers',
 | |
|             'games',
 | |
|             'events'
 | |
|         ]
 | |
|     }
 | |
| 
 | |
|     return dict(
 | |
|         t1=t1,
 | |
|     )
 | 
