1. 7f51a0332edd0c675c2d314ca3e62df7ef041281 deps/ipython (8.4.0-33-g7f51a0332)
1045 lines
39 KiB
ReStructuredText
1045 lines
39 KiB
ReStructuredText
=================
|
|
IPython reference
|
|
=================
|
|
|
|
.. _command_line_options:
|
|
|
|
Command-line usage
|
|
==================
|
|
|
|
You start IPython with the command::
|
|
|
|
$ ipython [options] files
|
|
|
|
If invoked with no options, it executes the file and exits, passing the
|
|
remaining arguments to the script, just as if you had specified the same
|
|
command with python. You may need to specify `--` before args to be passed
|
|
to the script, to prevent IPython from attempting to parse them.
|
|
If you add the ``-i`` flag, it drops you into the interpreter while still
|
|
acknowledging any options you may have set in your ``ipython_config.py``. This
|
|
behavior is different from standard Python, which when called as python ``-i``
|
|
will only execute one file and ignore your configuration setup.
|
|
|
|
Please note that some of the configuration options are not available at the
|
|
command line, simply because they are not practical here. Look into your
|
|
configuration files for details on those. There are separate configuration files
|
|
for each profile, and the files look like :file:`ipython_config.py` or
|
|
:file:`ipython_config_{frontendname}.py`. Profile directories look like
|
|
:file:`profile_{profilename}` and are typically installed in the
|
|
:envvar:`IPYTHONDIR` directory, which defaults to :file:`$HOME/.ipython`. For
|
|
Windows users, :envvar:`HOME` resolves to :file:`C:\\Users\\{YourUserName}` in
|
|
most instances.
|
|
|
|
Command-line Options
|
|
--------------------
|
|
|
|
To see the options IPython accepts, use ``ipython --help`` (and you probably
|
|
should run the output through a pager such as ``ipython --help | less`` for
|
|
more convenient reading). This shows all the options that have a single-word
|
|
alias to control them, but IPython lets you configure all of its objects from
|
|
the command-line by passing the full class name and a corresponding value; type
|
|
``ipython --help-all`` to see this full list. For example::
|
|
|
|
$ ipython --help-all
|
|
<...snip...>
|
|
--matplotlib=<CaselessStrEnum> (InteractiveShellApp.matplotlib)
|
|
Default: None
|
|
Choices: ['auto', 'gtk', 'gtk3', 'gtk4', 'inline', 'nbagg', 'notebook', 'osx', 'qt', 'qt4', 'qt5', 'tk', 'wx']
|
|
Configure matplotlib for interactive use with the default matplotlib
|
|
backend.
|
|
<...snip...>
|
|
|
|
|
|
Indicate that the following::
|
|
|
|
$ ipython --matplotlib qt
|
|
|
|
|
|
is equivalent to::
|
|
|
|
$ ipython --InteractiveShellApp.matplotlib='qt'
|
|
|
|
Note that in the second form, you *must* use the equal sign, as the expression
|
|
is evaluated as an actual Python assignment. While in the above example the
|
|
short form is more convenient, only the most common options have a short form,
|
|
while any configurable variable in IPython can be set at the command-line by
|
|
using the long form. This long form is the same syntax used in the
|
|
configuration files, if you want to set these options permanently.
|
|
|
|
|
|
Interactive use
|
|
===============
|
|
|
|
IPython is meant to work as a drop-in replacement for the standard interactive
|
|
interpreter. As such, any code which is valid python should execute normally
|
|
under IPython (cases where this is not true should be reported as bugs). It
|
|
does, however, offer many features which are not available at a standard python
|
|
prompt. What follows is a list of these.
|
|
|
|
|
|
Caution for Windows users
|
|
-------------------------
|
|
|
|
Windows, unfortunately, uses the ``\`` character as a path separator. This is a
|
|
terrible choice, because ``\`` also represents the escape character in most
|
|
modern programming languages, including Python. For this reason, using '/'
|
|
character is recommended if you have problems with ``\``. However, in Windows
|
|
commands '/' flags options, so you can not use it for the root directory. This
|
|
means that paths beginning at the root must be typed in a contrived manner
|
|
like: ``%copy \opt/foo/bar.txt \tmp``
|
|
|
|
.. _magic:
|
|
|
|
Magic command system
|
|
--------------------
|
|
|
|
IPython will treat any line whose first character is a % as a special
|
|
call to a 'magic' function. These allow you to control the behavior of
|
|
IPython itself, plus a lot of system-type features. They are all
|
|
prefixed with a % character, but parameters are given without
|
|
parentheses or quotes.
|
|
|
|
Lines that begin with ``%%`` signal a *cell magic*: they take as arguments not
|
|
only the rest of the current line, but all lines below them as well, in the
|
|
current execution block. Cell magics can in fact make arbitrary modifications
|
|
to the input they receive, which need not even be valid Python code at all.
|
|
They receive the whole block as a single string.
|
|
|
|
As a line magic example, the :magic:`cd` magic works just like the OS command of
|
|
the same name::
|
|
|
|
In [8]: %cd
|
|
/home/fperez
|
|
|
|
The following uses the builtin :magic:`timeit` in cell mode::
|
|
|
|
In [10]: %%timeit x = range(10000)
|
|
...: min(x)
|
|
...: max(x)
|
|
...:
|
|
1000 loops, best of 3: 438 us per loop
|
|
|
|
In this case, ``x = range(10000)`` is called as the line argument, and the
|
|
block with ``min(x)`` and ``max(x)`` is called as the cell body. The
|
|
:magic:`timeit` magic receives both.
|
|
|
|
If you have 'automagic' enabled (as it is by default), you don't need to type in
|
|
the single ``%`` explicitly for line magics; IPython will scan its internal
|
|
list of magic functions and call one if it exists. With automagic on you can
|
|
then just type ``cd mydir`` to go to directory 'mydir'::
|
|
|
|
In [9]: cd mydir
|
|
/home/fperez/mydir
|
|
|
|
Cell magics *always* require an explicit ``%%`` prefix, automagic
|
|
calling only works for line magics.
|
|
|
|
The automagic system has the lowest possible precedence in name searches, so
|
|
you can freely use variables with the same names as magic commands. If a magic
|
|
command is 'shadowed' by a variable, you will need the explicit ``%`` prefix to
|
|
use it:
|
|
|
|
.. sourcecode:: ipython
|
|
|
|
In [1]: cd ipython # %cd is called by automagic
|
|
/home/fperez/ipython
|
|
|
|
In [2]: cd=1 # now cd is just a variable
|
|
|
|
In [3]: cd .. # and doesn't work as a function anymore
|
|
File "<ipython-input-3-9fedb3aff56c>", line 1
|
|
cd ..
|
|
^
|
|
SyntaxError: invalid syntax
|
|
|
|
|
|
In [4]: %cd .. # but %cd always works
|
|
/home/fperez
|
|
|
|
In [5]: del cd # if you remove the cd variable, automagic works again
|
|
|
|
In [6]: cd ipython
|
|
|
|
/home/fperez/ipython
|
|
|
|
Line magics, if they return a value, can be assigned to a variable using the
|
|
syntax ``l = %sx ls`` (which in this particular case returns the result of `ls`
|
|
as a python list). See :ref:`below <manual_capture>` for more information.
|
|
|
|
Type ``%magic`` for more information, including a list of all available magic
|
|
functions at any time and their docstrings. You can also type
|
|
``%magic_function_name?`` (see :ref:`below <dynamic_object_info>` for
|
|
information on the '?' system) to get information about any particular magic
|
|
function you are interested in.
|
|
|
|
The API documentation for the :mod:`IPython.core.magic` module contains the full
|
|
docstrings of all currently available magic commands.
|
|
|
|
.. seealso::
|
|
|
|
:doc:`magics`
|
|
A list of the line and cell magics available in IPython by default
|
|
|
|
:ref:`defining_magics`
|
|
How to define and register additional magic functions
|
|
|
|
|
|
Access to the standard Python help
|
|
----------------------------------
|
|
|
|
Simply type ``help()`` to access Python's standard help system. You can
|
|
also type ``help(object)`` for information about a given object, or
|
|
``help('keyword')`` for information on a keyword. You may need to configure your
|
|
PYTHONDOCS environment variable for this feature to work correctly.
|
|
|
|
.. _dynamic_object_info:
|
|
|
|
Dynamic object information
|
|
--------------------------
|
|
|
|
Typing ``?word`` or ``word?`` prints detailed information about an object. If
|
|
certain strings in the object are too long (e.g. function signatures) they get
|
|
snipped in the center for brevity. This system gives access variable types and
|
|
values, docstrings, function prototypes and other useful information.
|
|
|
|
If the information will not fit in the terminal, it is displayed in a pager
|
|
(``less`` if available, otherwise a basic internal pager).
|
|
|
|
Typing ``??word`` or ``word??`` gives access to the full information, including
|
|
the source code where possible. Long strings are not snipped.
|
|
|
|
The following magic functions are particularly useful for gathering
|
|
information about your working environment:
|
|
|
|
* :magic:`pdoc` **<object>**: Print (or run through a pager if too long) the
|
|
docstring for an object. If the given object is a class, it will
|
|
print both the class and the constructor docstrings.
|
|
* :magic:`pdef` **<object>**: Print the call signature for any callable
|
|
object. If the object is a class, print the constructor information.
|
|
* :magic:`psource` **<object>**: Print (or run through a pager if too long)
|
|
the source code for an object.
|
|
* :magic:`pfile` **<object>**: Show the entire source file where an object was
|
|
defined via a pager, opening it at the line where the object
|
|
definition begins.
|
|
* :magic:`who`/:magic:`whos`: These functions give information about identifiers
|
|
you have defined interactively (not things you loaded or defined
|
|
in your configuration files). %who just prints a list of
|
|
identifiers and %whos prints a table with some basic details about
|
|
each identifier.
|
|
|
|
The dynamic object information functions (?/??, ``%pdoc``,
|
|
``%pfile``, ``%pdef``, ``%psource``) work on object attributes, as well as
|
|
directly on variables. For example, after doing ``import os``, you can use
|
|
``os.path.abspath??``.
|
|
|
|
|
|
Command line completion
|
|
+++++++++++++++++++++++
|
|
|
|
At any time, hitting TAB will complete any available python commands or
|
|
variable names, and show you a list of the possible completions if
|
|
there's no unambiguous one. It will also complete filenames in the
|
|
current directory if no python names match what you've typed so far.
|
|
|
|
|
|
Search command history
|
|
++++++++++++++++++++++
|
|
|
|
IPython provides two ways for searching through previous input and thus
|
|
reduce the need for repetitive typing:
|
|
|
|
1. Start typing, and then use the up and down arrow keys (or :kbd:`Ctrl-p`
|
|
and :kbd:`Ctrl-n`) to search through only the history items that match
|
|
what you've typed so far.
|
|
2. Hit :kbd:`Ctrl-r`: to open a search prompt. Begin typing and the system
|
|
searches your history for lines that contain what you've typed so
|
|
far, completing as much as it can.
|
|
|
|
IPython will save your input history when it leaves and reload it next
|
|
time you restart it. By default, the history file is named
|
|
:file:`.ipython/profile_{name}/history.sqlite`.
|
|
|
|
Autoindent
|
|
++++++++++
|
|
|
|
Starting with 5.0, IPython uses `prompt_toolkit` in place of ``readline``,
|
|
it thus can recognize lines ending in ':' and indent the next line,
|
|
while also un-indenting automatically after 'raise' or 'return',
|
|
and support real multi-line editing as well as syntactic coloration
|
|
during edition.
|
|
|
|
This feature does not use the ``readline`` library anymore, so it will
|
|
not honor your :file:`~/.inputrc` configuration (or whatever
|
|
file your :envvar:`INPUTRC` environment variable points to).
|
|
|
|
In particular if you want to change the input mode to ``vi``, you will need to
|
|
set the ``TerminalInteractiveShell.editing_mode`` configuration option of IPython.
|
|
|
|
Session logging and restoring
|
|
-----------------------------
|
|
|
|
You can log all input from a session either by starting IPython with the
|
|
command line switch ``--logfile=foo.py`` (see :ref:`here <command_line_options>`)
|
|
or by activating the logging at any moment with the magic function :magic:`logstart`.
|
|
|
|
Log files can later be reloaded by running them as scripts and IPython
|
|
will attempt to 'replay' the log by executing all the lines in it, thus
|
|
restoring the state of a previous session. This feature is not quite
|
|
perfect, but can still be useful in many cases.
|
|
|
|
The log files can also be used as a way to have a permanent record of
|
|
any code you wrote while experimenting. Log files are regular text files
|
|
which you can later open in your favorite text editor to extract code or
|
|
to 'clean them up' before using them to replay a session.
|
|
|
|
The :magic:`logstart` function for activating logging in mid-session is used as
|
|
follows::
|
|
|
|
%logstart [log_name [log_mode]]
|
|
|
|
If no name is given, it defaults to a file named 'ipython_log.py' in your
|
|
current working directory, in 'rotate' mode (see below).
|
|
|
|
'%logstart name' saves to file 'name' in 'backup' mode. It saves your
|
|
history up to that point and then continues logging.
|
|
|
|
%logstart takes a second optional parameter: logging mode. This can be
|
|
one of (note that the modes are given unquoted):
|
|
|
|
* [over:] overwrite existing log_name.
|
|
* [backup:] rename (if exists) to log_name~ and start log_name.
|
|
* [append:] well, that says it.
|
|
* [rotate:] create rotating logs log_name.1~, log_name.2~, etc.
|
|
|
|
Adding the '-o' flag to '%logstart' magic (as in '%logstart -o [log_name [log_mode]]')
|
|
will also include output from iPython in the log file.
|
|
|
|
The :magic:`logoff` and :magic:`logon` functions allow you to temporarily stop and
|
|
resume logging to a file which had previously been started with
|
|
%logstart. They will fail (with an explanation) if you try to use them
|
|
before logging has been started.
|
|
|
|
.. _system_shell_access:
|
|
|
|
System shell access
|
|
-------------------
|
|
|
|
Any input line beginning with a ``!`` character is passed verbatim (minus
|
|
the ``!``, of course) to the underlying operating system. For example,
|
|
typing ``!ls`` will run 'ls' in the current directory.
|
|
|
|
.. _manual_capture:
|
|
|
|
Manual capture of command output and magic output
|
|
-------------------------------------------------
|
|
|
|
You can assign the result of a system command to a Python variable with the
|
|
syntax ``myfiles = !ls``. Similarly, the result of a magic (as long as it returns
|
|
a value) can be assigned to a variable. For example, the syntax ``myfiles = %sx ls``
|
|
is equivalent to the above system command example (the :magic:`sx` magic runs a shell command
|
|
and captures the output). Each of these gets machine
|
|
readable output from stdout (e.g. without colours), and splits on newlines. To
|
|
explicitly get this sort of output without assigning to a variable, use two
|
|
exclamation marks (``!!ls``) or the :magic:`sx` magic command without an assignment.
|
|
(However, ``!!`` commands cannot be assigned to a variable.)
|
|
|
|
The captured list in this example has some convenience features. ``myfiles.n`` or ``myfiles.s``
|
|
returns a string delimited by newlines or spaces, respectively. ``myfiles.p``
|
|
produces `path objects <http://pypi.python.org/pypi/path.py>`_ from the list items.
|
|
See :ref:`string_lists` for details.
|
|
|
|
IPython also allows you to expand the value of python variables when
|
|
making system calls. Wrap variables or expressions in {braces}::
|
|
|
|
In [1]: pyvar = 'Hello world'
|
|
In [2]: !echo "A python variable: {pyvar}"
|
|
A python variable: Hello world
|
|
In [3]: import math
|
|
In [4]: x = 8
|
|
In [5]: !echo {math.factorial(x)}
|
|
40320
|
|
|
|
For simple cases, you can alternatively prepend $ to a variable name::
|
|
|
|
In [6]: !echo $sys.argv
|
|
[/home/fperez/usr/bin/ipython]
|
|
In [7]: !echo "A system variable: $$HOME" # Use $$ for literal $
|
|
A system variable: /home/fperez
|
|
|
|
Note that `$$` is used to represent a literal `$`.
|
|
|
|
System command aliases
|
|
----------------------
|
|
|
|
The :magic:`alias` magic function allows you to define magic functions which are in fact
|
|
system shell commands. These aliases can have parameters.
|
|
|
|
``%alias alias_name cmd`` defines 'alias_name' as an alias for 'cmd'
|
|
|
|
Then, typing ``alias_name params`` will execute the system command 'cmd
|
|
params' (from your underlying operating system).
|
|
|
|
You can also define aliases with parameters using ``%s`` specifiers (one per
|
|
parameter). The following example defines the parts function as an
|
|
alias to the command ``echo first %s second %s`` where each ``%s`` will be
|
|
replaced by a positional parameter to the call to %parts::
|
|
|
|
In [1]: %alias parts echo first %s second %s
|
|
In [2]: parts A B
|
|
first A second B
|
|
In [3]: parts A
|
|
ERROR: Alias <parts> requires 2 arguments, 1 given.
|
|
|
|
If called with no parameters, :magic:`alias` prints the table of currently
|
|
defined aliases.
|
|
|
|
The :magic:`rehashx` magic allows you to load your entire $PATH as
|
|
ipython aliases. See its docstring for further details.
|
|
|
|
|
|
.. _dreload:
|
|
|
|
Recursive reload
|
|
----------------
|
|
|
|
The :mod:`IPython.lib.deepreload` module allows you to recursively reload a
|
|
module: changes made to any of its dependencies will be reloaded without
|
|
having to exit. To start using it, do::
|
|
|
|
from IPython.lib.deepreload import reload as dreload
|
|
|
|
|
|
Verbose and colored exception traceback printouts
|
|
-------------------------------------------------
|
|
|
|
IPython provides the option to see very detailed exception tracebacks,
|
|
which can be especially useful when debugging large programs. You can
|
|
run any Python file with the %run function to benefit from these
|
|
detailed tracebacks. Furthermore, both normal and verbose tracebacks can
|
|
be colored (if your terminal supports it) which makes them much easier
|
|
to parse visually.
|
|
|
|
See the magic :magic:`xmode` and :magic:`colors` functions for details.
|
|
|
|
These features are basically a terminal version of Ka-Ping Yee's cgitb
|
|
module, now part of the standard Python library.
|
|
|
|
|
|
.. _input_caching:
|
|
|
|
Input caching system
|
|
--------------------
|
|
|
|
IPython offers numbered prompts (In/Out) with input and output caching
|
|
(also referred to as 'input history'). All input is saved and can be
|
|
retrieved as variables (besides the usual arrow key recall), in
|
|
addition to the :magic:`rep` magic command that brings a history entry
|
|
up for editing on the next command line.
|
|
|
|
The following variables always exist:
|
|
|
|
* ``_i``, ``_ii``, ``_iii``: store previous, next previous and next-next
|
|
previous inputs.
|
|
|
|
* ``In``, ``_ih`` : a list of all inputs; ``_ih[n]`` is the input from line
|
|
``n``. If you overwrite In with a variable of your own, you can remake the
|
|
assignment to the internal list with a simple ``In=_ih``.
|
|
|
|
Additionally, global variables named ``_i<n>`` are dynamically created (``<n>``
|
|
being the prompt counter), so ``_i<n> == _ih[<n>] == In[<n>]``.
|
|
|
|
For example, what you typed at prompt 14 is available as ``_i14``, ``_ih[14]``
|
|
and ``In[14]``.
|
|
|
|
This allows you to easily cut and paste multi line interactive prompts
|
|
by printing them out: they print like a clean string, without prompt
|
|
characters. You can also manipulate them like regular variables (they
|
|
are strings), modify or exec them.
|
|
|
|
You can also re-execute multiple lines of input easily by using the magic
|
|
:magic:`rerun` or :magic:`macro` functions. The macro system also allows you to
|
|
re-execute previous lines which include magic function calls (which require
|
|
special processing). Type %macro? for more details on the macro system.
|
|
|
|
A history function :magic:`history` allows you to see any part of your input
|
|
history by printing a range of the _i variables.
|
|
|
|
You can also search ('grep') through your history by typing
|
|
``%hist -g somestring``. This is handy for searching for URLs, IP addresses,
|
|
etc. You can bring history entries listed by '%hist -g' up for editing
|
|
with the %recall command, or run them immediately with :magic:`rerun`.
|
|
|
|
.. _output_caching:
|
|
|
|
Output caching system
|
|
---------------------
|
|
|
|
For output that is returned from actions, a system similar to the input
|
|
cache exists but using _ instead of _i. Only actions that produce a
|
|
result (NOT assignments, for example) are cached. If you are familiar
|
|
with Mathematica, IPython's _ variables behave exactly like
|
|
Mathematica's % variables.
|
|
|
|
The following variables always exist:
|
|
|
|
* [_] (a single underscore): stores previous output, like Python's
|
|
default interpreter.
|
|
* [__] (two underscores): next previous.
|
|
* [___] (three underscores): next-next previous.
|
|
|
|
Additionally, global variables named _<n> are dynamically created (<n>
|
|
being the prompt counter), such that the result of output <n> is always
|
|
available as _<n> (don't use the angle brackets, just the number, e.g.
|
|
``_21``).
|
|
|
|
These variables are also stored in a global dictionary (not a
|
|
list, since it only has entries for lines which returned a result)
|
|
available under the names _oh and Out (similar to _ih and In). So the
|
|
output from line 12 can be obtained as ``_12``, ``Out[12]`` or ``_oh[12]``. If you
|
|
accidentally overwrite the Out variable you can recover it by typing
|
|
``Out=_oh`` at the prompt.
|
|
|
|
This system obviously can potentially put heavy memory demands on your
|
|
system, since it prevents Python's garbage collector from removing any
|
|
previously computed results. You can control how many results are kept
|
|
in memory with the configuration option ``InteractiveShell.cache_size``.
|
|
If you set it to 0, output caching is disabled. You can also use the :magic:`reset`
|
|
and :magic:`xdel` magics to clear large items from memory.
|
|
|
|
Directory history
|
|
-----------------
|
|
|
|
Your history of visited directories is kept in the global list _dh, and
|
|
the magic :magic:`cd` command can be used to go to any entry in that list. The
|
|
:magic:`dhist` command allows you to view this history. Do ``cd -<TAB>`` to
|
|
conveniently view the directory history.
|
|
|
|
|
|
Automatic parentheses and quotes
|
|
--------------------------------
|
|
|
|
These features were adapted from Nathan Gray's LazyPython. They are
|
|
meant to allow less typing for common situations.
|
|
|
|
Callable objects (i.e. functions, methods, etc) can be invoked like this
|
|
(notice the commas between the arguments)::
|
|
|
|
In [1]: callable_ob arg1, arg2, arg3
|
|
------> callable_ob(arg1, arg2, arg3)
|
|
|
|
.. note::
|
|
This feature is disabled by default. To enable it, use the ``%autocall``
|
|
magic command. The commands below with special prefixes will always work,
|
|
however.
|
|
|
|
You can force automatic parentheses by using '/' as the first character
|
|
of a line. For example::
|
|
|
|
In [2]: /globals # becomes 'globals()'
|
|
|
|
Note that the '/' MUST be the first character on the line! This won't work::
|
|
|
|
In [3]: print /globals # syntax error
|
|
|
|
In most cases the automatic algorithm should work, so you should rarely
|
|
need to explicitly invoke /. One notable exception is if you are trying
|
|
to call a function with a list of tuples as arguments (the parenthesis
|
|
will confuse IPython)::
|
|
|
|
In [4]: zip (1,2,3),(4,5,6) # won't work
|
|
|
|
but this will work::
|
|
|
|
In [5]: /zip (1,2,3),(4,5,6)
|
|
------> zip ((1,2,3),(4,5,6))
|
|
Out[5]: [(1, 4), (2, 5), (3, 6)]
|
|
|
|
IPython tells you that it has altered your command line by displaying
|
|
the new command line preceded by ``--->``.
|
|
|
|
You can force automatic quoting of a function's arguments by using ``,``
|
|
or ``;`` as the first character of a line. For example::
|
|
|
|
In [1]: ,my_function /home/me # becomes my_function("/home/me")
|
|
|
|
If you use ';' the whole argument is quoted as a single string, while ',' splits
|
|
on whitespace::
|
|
|
|
In [2]: ,my_function a b c # becomes my_function("a","b","c")
|
|
|
|
In [3]: ;my_function a b c # becomes my_function("a b c")
|
|
|
|
Note that the ',' or ';' MUST be the first character on the line! This
|
|
won't work::
|
|
|
|
In [4]: x = ,my_function /home/me # syntax error
|
|
|
|
IPython as your default Python environment
|
|
==========================================
|
|
|
|
Python honors the environment variable :envvar:`PYTHONSTARTUP` and will
|
|
execute at startup the file referenced by this variable. If you put the
|
|
following code at the end of that file, then IPython will be your working
|
|
environment anytime you start Python::
|
|
|
|
import os, IPython
|
|
os.environ['PYTHONSTARTUP'] = '' # Prevent running this again
|
|
IPython.start_ipython()
|
|
raise SystemExit
|
|
|
|
The ``raise SystemExit`` is needed to exit Python when
|
|
it finishes, otherwise you'll be back at the normal Python ``>>>``
|
|
prompt.
|
|
|
|
This is probably useful to developers who manage multiple Python
|
|
versions and don't want to have correspondingly multiple IPython
|
|
versions. Note that in this mode, there is no way to pass IPython any
|
|
command-line options, as those are trapped first by Python itself.
|
|
|
|
.. _Embedding:
|
|
|
|
Embedding IPython
|
|
=================
|
|
|
|
You can start a regular IPython session with
|
|
|
|
.. sourcecode:: python
|
|
|
|
import IPython
|
|
IPython.start_ipython(argv=[])
|
|
|
|
at any point in your program. This will load IPython configuration,
|
|
startup files, and everything, just as if it were a normal IPython session.
|
|
For information on setting configuration options when running IPython from
|
|
python, see :ref:`configure_start_ipython`.
|
|
|
|
It is also possible to embed an IPython shell in a namespace in your Python
|
|
code. This allows you to evaluate dynamically the state of your code, operate
|
|
with your variables, analyze them, etc. For example, if you run the following
|
|
code snippet::
|
|
|
|
import IPython
|
|
|
|
a = 42
|
|
IPython.embed()
|
|
|
|
and within the IPython shell, you reassign `a` to `23` to do further testing of
|
|
some sort, you can then exit::
|
|
|
|
>>> IPython.embed()
|
|
Python 3.6.2 (default, Jul 17 2017, 16:44:45)
|
|
Type 'copyright', 'credits' or 'license' for more information
|
|
IPython 6.2.0.dev -- An enhanced Interactive Python. Type '?' for help.
|
|
|
|
In [1]: a = 23
|
|
|
|
In [2]: exit()
|
|
|
|
Once you exit and print `a`, the value 23 will be shown::
|
|
|
|
|
|
In: print(a)
|
|
23
|
|
|
|
It's important to note that the code run in the embedded IPython shell will
|
|
*not* change the state of your code and variables, **unless** the shell is
|
|
contained within the global namespace. In the above example, `a` is changed
|
|
because this is true.
|
|
|
|
To further exemplify this, consider the following example::
|
|
|
|
import IPython
|
|
def do():
|
|
a = 42
|
|
print(a)
|
|
IPython.embed()
|
|
print(a)
|
|
|
|
Now if call the function and complete the state changes as we did above, the
|
|
value `42` will be printed. Again, this is because it's not in the global
|
|
namespace::
|
|
|
|
do()
|
|
|
|
Running a file with the above code can lead to the following session::
|
|
|
|
>>> do()
|
|
42
|
|
Python 3.6.2 (default, Jul 17 2017, 16:44:45)
|
|
Type 'copyright', 'credits' or 'license' for more information
|
|
IPython 6.2.0.dev -- An enhanced Interactive Python. Type '?' for help.
|
|
|
|
In [1]: a = 23
|
|
|
|
In [2]: exit()
|
|
42
|
|
|
|
.. note::
|
|
|
|
At present, embedding IPython cannot be done from inside IPython.
|
|
Run the code samples below outside IPython.
|
|
|
|
This feature allows you to easily have a fully functional python
|
|
environment for doing object introspection anywhere in your code with a
|
|
simple function call. In some cases a simple print statement is enough,
|
|
but if you need to do more detailed analysis of a code fragment this
|
|
feature can be very valuable.
|
|
|
|
It can also be useful in scientific computing situations where it is
|
|
common to need to do some automatic, computationally intensive part and
|
|
then stop to look at data, plots, etc.
|
|
Opening an IPython instance will give you full access to your data and
|
|
functions, and you can resume program execution once you are done with
|
|
the interactive part (perhaps to stop again later, as many times as
|
|
needed).
|
|
|
|
The following code snippet is the bare minimum you need to include in
|
|
your Python programs for this to work (detailed examples follow later)::
|
|
|
|
from IPython import embed
|
|
|
|
embed() # this call anywhere in your program will start IPython
|
|
|
|
You can also embed an IPython *kernel*, for use with qtconsole, etc. via
|
|
``IPython.embed_kernel()``. This should work the same way, but you can
|
|
connect an external frontend (``ipython qtconsole`` or ``ipython console``),
|
|
rather than interacting with it in the terminal.
|
|
|
|
You can run embedded instances even in code which is itself being run at
|
|
the IPython interactive prompt with '%run <filename>'. Since it's easy
|
|
to get lost as to where you are (in your top-level IPython or in your
|
|
embedded one), it's a good idea in such cases to set the in/out prompts
|
|
to something different for the embedded instances. The code examples
|
|
below illustrate this.
|
|
|
|
You can also have multiple IPython instances in your program and open
|
|
them separately, for example with different options for data
|
|
presentation. If you close and open the same instance multiple times,
|
|
its prompt counters simply continue from each execution to the next.
|
|
|
|
Please look at the docstrings in the :mod:`~IPython.frontend.terminal.embed`
|
|
module for more details on the use of this system.
|
|
|
|
The following sample file illustrating how to use the embedding
|
|
functionality is provided in the examples directory as embed_class_long.py.
|
|
It should be fairly self-explanatory:
|
|
|
|
.. literalinclude:: ../../../examples/Embedding/embed_class_long.py
|
|
:language: python
|
|
|
|
Once you understand how the system functions, you can use the following
|
|
code fragments in your programs which are ready for cut and paste:
|
|
|
|
.. literalinclude:: ../../../examples/Embedding/embed_class_short.py
|
|
:language: python
|
|
|
|
Using the Python debugger (pdb)
|
|
===============================
|
|
|
|
Running entire programs via pdb
|
|
-------------------------------
|
|
|
|
pdb, the Python debugger, is a powerful interactive debugger which
|
|
allows you to step through code, set breakpoints, watch variables,
|
|
etc. IPython makes it very easy to start any script under the control
|
|
of pdb, regardless of whether you have wrapped it into a 'main()'
|
|
function or not. For this, simply type ``%run -d myscript`` at an
|
|
IPython prompt. See the :magic:`run` command's documentation for more details, including
|
|
how to control where pdb will stop execution first.
|
|
|
|
For more information on the use of the pdb debugger, see :ref:`debugger-commands`
|
|
in the Python documentation.
|
|
|
|
IPython extends the debugger with a few useful additions, like coloring of
|
|
tracebacks. The debugger will adopt the color scheme selected for IPython.
|
|
|
|
The ``where`` command has also been extended to take as argument the number of
|
|
context line to show. This allows to a many line of context on shallow stack trace:
|
|
|
|
.. code::
|
|
|
|
In [5]: def foo(x):
|
|
...: 1
|
|
...: 2
|
|
...: 3
|
|
...: return 1/x+foo(x-1)
|
|
...: 5
|
|
...: 6
|
|
...: 7
|
|
...:
|
|
|
|
In[6]: foo(1)
|
|
# ...
|
|
ipdb> where 8
|
|
<ipython-input-6-9e45007b2b59>(1)<module>
|
|
----> 1 foo(1)
|
|
|
|
<ipython-input-5-7baadc3d1465>(5)foo()
|
|
1 def foo(x):
|
|
2 1
|
|
3 2
|
|
4 3
|
|
----> 5 return 1/x+foo(x-1)
|
|
6 5
|
|
7 6
|
|
8 7
|
|
|
|
> <ipython-input-5-7baadc3d1465>(5)foo()
|
|
1 def foo(x):
|
|
2 1
|
|
3 2
|
|
4 3
|
|
----> 5 return 1/x+foo(x-1)
|
|
6 5
|
|
7 6
|
|
8 7
|
|
|
|
|
|
And less context on shallower Stack Trace:
|
|
|
|
.. code::
|
|
|
|
ipdb> where 1
|
|
<ipython-input-13-afa180a57233>(1)<module>
|
|
----> 1 foo(7)
|
|
|
|
<ipython-input-5-7baadc3d1465>(5)foo()
|
|
----> 5 return 1/x+foo(x-1)
|
|
|
|
<ipython-input-5-7baadc3d1465>(5)foo()
|
|
----> 5 return 1/x+foo(x-1)
|
|
|
|
<ipython-input-5-7baadc3d1465>(5)foo()
|
|
----> 5 return 1/x+foo(x-1)
|
|
|
|
<ipython-input-5-7baadc3d1465>(5)foo()
|
|
----> 5 return 1/x+foo(x-1)
|
|
|
|
|
|
Post-mortem debugging
|
|
---------------------
|
|
|
|
Going into a debugger when an exception occurs can be
|
|
extremely useful in order to find the origin of subtle bugs, because pdb
|
|
opens up at the point in your code which triggered the exception, and
|
|
while your program is at this point 'dead', all the data is still
|
|
available and you can walk up and down the stack frame and understand
|
|
the origin of the problem.
|
|
|
|
You can use the :magic:`debug` magic after an exception has occurred to start
|
|
post-mortem debugging. IPython can also call debugger every time your code
|
|
triggers an uncaught exception. This feature can be toggled with the :magic:`pdb` magic
|
|
command, or you can start IPython with the ``--pdb`` option.
|
|
|
|
For a post-mortem debugger in your programs outside IPython,
|
|
put the following lines toward the top of your 'main' routine::
|
|
|
|
import sys
|
|
from IPython.core import ultratb
|
|
sys.excepthook = ultratb.FormattedTB(mode='Verbose',
|
|
color_scheme='Linux', call_pdb=1)
|
|
|
|
The mode keyword can be either 'Verbose' or 'Plain', giving either very
|
|
detailed or normal tracebacks respectively. The color_scheme keyword can
|
|
be one of 'NoColor', 'Linux' (default) or 'LightBG'. These are the same
|
|
options which can be set in IPython with ``--colors`` and ``--xmode``.
|
|
|
|
This will give any of your programs detailed, colored tracebacks with
|
|
automatic invocation of pdb.
|
|
|
|
.. _pasting_with_prompts:
|
|
|
|
Pasting of code starting with Python or IPython prompts
|
|
=======================================================
|
|
|
|
IPython is smart enough to filter out input prompts, be they plain Python ones
|
|
(``>>>`` and ``...``) or IPython ones (``In [N]:`` and ``...:``). You can
|
|
therefore copy and paste from existing interactive sessions without worry.
|
|
|
|
The following is a 'screenshot' of how things work, copying an example from the
|
|
standard Python tutorial::
|
|
|
|
In [1]: >>> # Fibonacci series:
|
|
|
|
In [2]: ... # the sum of two elements defines the next
|
|
|
|
In [3]: ... a, b = 0, 1
|
|
|
|
In [4]: >>> while b < 10:
|
|
...: ... print(b)
|
|
...: ... a, b = b, a+b
|
|
...:
|
|
1
|
|
1
|
|
2
|
|
3
|
|
5
|
|
8
|
|
|
|
And pasting from IPython sessions works equally well::
|
|
|
|
In [1]: In [5]: def f(x):
|
|
...: ...: "A simple function"
|
|
...: ...: return x**2
|
|
...: ...:
|
|
|
|
In [2]: f(3)
|
|
Out[2]: 9
|
|
|
|
.. _gui_support:
|
|
|
|
GUI event loop support
|
|
======================
|
|
|
|
IPython has excellent support for working interactively with Graphical User
|
|
Interface (GUI) toolkits, such as wxPython, PyQt4/PySide, PyGTK and Tk. This is
|
|
implemented by running the toolkit's event loop while IPython is waiting for
|
|
input.
|
|
|
|
For users, enabling GUI event loop integration is simple. You simple use the
|
|
:magic:`gui` magic as follows::
|
|
|
|
%gui [GUINAME]
|
|
|
|
With no arguments, ``%gui`` removes all GUI support. Valid ``GUINAME``
|
|
arguments include ``wx``, ``qt``, ``qt5``, ``gtk``, ``gtk3`` ``gtk4``, and
|
|
``tk``.
|
|
|
|
Thus, to use wxPython interactively and create a running :class:`wx.App`
|
|
object, do::
|
|
|
|
%gui wx
|
|
|
|
You can also start IPython with an event loop set up using the `--gui`
|
|
flag::
|
|
|
|
$ ipython --gui=qt
|
|
|
|
For information on IPython's matplotlib_ integration (and the ``matplotlib``
|
|
mode) see :ref:`this section <matplotlib_support>`.
|
|
|
|
For developers that want to integrate additional event loops with IPython, see
|
|
:doc:`/config/eventloops`.
|
|
|
|
When running inside IPython with an integrated event loop, a GUI application
|
|
should *not* start its own event loop. This means that applications that are
|
|
meant to be used both
|
|
in IPython and as standalone apps need to have special code to detects how the
|
|
application is being run. We highly recommend using IPython's support for this.
|
|
Since the details vary slightly between toolkits, we point you to the various
|
|
examples in our source directory :file:`examples/IPython Kernel/gui/` that
|
|
demonstrate these capabilities.
|
|
|
|
PyQt and PySide
|
|
---------------
|
|
|
|
.. attempt at explanation of the complete mess that is Qt support
|
|
|
|
When you use ``--gui=qt`` or ``--matplotlib=qt``, IPython can work with either
|
|
PyQt4 or PySide. There are three options for configuration here, because
|
|
PyQt4 has two APIs for QString and QVariant: v1, which is the default on
|
|
Python 2, and the more natural v2, which is the only API supported by PySide.
|
|
v2 is also the default for PyQt4 on Python 3. IPython's code for the QtConsole
|
|
uses v2, but you can still use any interface in your code, since the
|
|
Qt frontend is in a different process.
|
|
|
|
The default will be to import PyQt4 without configuration of the APIs, thus
|
|
matching what most applications would expect. It will fall back to PySide if
|
|
PyQt4 is unavailable.
|
|
|
|
If specified, IPython will respect the environment variable ``QT_API`` used
|
|
by ETS. ETS 4.0 also works with both PyQt4 and PySide, but it requires
|
|
PyQt4 to use its v2 API. So if ``QT_API=pyside`` PySide will be used,
|
|
and if ``QT_API=pyqt`` then PyQt4 will be used *with the v2 API* for
|
|
QString and QVariant, so ETS codes like MayaVi will also work with IPython.
|
|
|
|
If you launch IPython in matplotlib mode with ``ipython --matplotlib=qt``,
|
|
then IPython will ask matplotlib which Qt library to use (only if QT_API is
|
|
*not set*), via the 'backend.qt4' rcParam. If matplotlib is version 1.0.1 or
|
|
older, then IPython will always use PyQt4 without setting the v2 APIs, since
|
|
neither v2 PyQt nor PySide work.
|
|
|
|
.. warning::
|
|
|
|
Note that this means for ETS 4 to work with PyQt4, ``QT_API`` *must* be set
|
|
to work with IPython's qt integration, because otherwise PyQt4 will be
|
|
loaded in an incompatible mode.
|
|
|
|
It also means that you must *not* have ``QT_API`` set if you want to
|
|
use ``--gui=qt`` with code that requires PyQt4 API v1.
|
|
|
|
|
|
.. _matplotlib_support:
|
|
|
|
Plotting with matplotlib
|
|
========================
|
|
|
|
matplotlib_ provides high quality 2D and 3D plotting for Python. matplotlib_
|
|
can produce plots on screen using a variety of GUI toolkits, including Tk,
|
|
PyGTK, PyQt4 and wxPython. It also provides a number of commands useful for
|
|
scientific computing, all with a syntax compatible with that of the popular
|
|
Matlab program.
|
|
|
|
To start IPython with matplotlib support, use the ``--matplotlib`` switch. If
|
|
IPython is already running, you can run the :magic:`matplotlib` magic. If no
|
|
arguments are given, IPython will automatically detect your choice of
|
|
matplotlib backend. You can also request a specific backend with
|
|
``%matplotlib backend``, where ``backend`` must be one of: 'tk', 'qt', 'wx',
|
|
'gtk', 'osx'. In the web notebook and Qt console, 'inline' is also a valid
|
|
backend value, which produces static figures inlined inside the application
|
|
window instead of matplotlib's interactive figures that live in separate
|
|
windows.
|
|
|
|
.. _interactive_demos:
|
|
|
|
Interactive demos with IPython
|
|
==============================
|
|
|
|
IPython ships with a basic system for running scripts interactively in
|
|
sections, useful when presenting code to audiences. A few tags embedded
|
|
in comments (so that the script remains valid Python code) divide a file
|
|
into separate blocks, and the demo can be run one block at a time, with
|
|
IPython printing (with syntax highlighting) the block before executing
|
|
it, and returning to the interactive prompt after each block. The
|
|
interactive namespace is updated after each block is run with the
|
|
contents of the demo's namespace.
|
|
|
|
This allows you to show a piece of code, run it and then execute
|
|
interactively commands based on the variables just created. Once you
|
|
want to continue, you simply execute the next block of the demo. The
|
|
following listing shows the markup necessary for dividing a script into
|
|
sections for execution as a demo:
|
|
|
|
.. literalinclude:: ../../../examples/IPython Kernel/example-demo.py
|
|
:language: python
|
|
|
|
In order to run a file as a demo, you must first make a Demo object out
|
|
of it. If the file is named myscript.py, the following code will make a
|
|
demo::
|
|
|
|
from IPython.lib.demo import Demo
|
|
|
|
mydemo = Demo('myscript.py')
|
|
|
|
This creates the mydemo object, whose blocks you run one at a time by
|
|
simply calling the object with no arguments. Then call it to run each step
|
|
of the demo::
|
|
|
|
mydemo()
|
|
|
|
Demo objects can be
|
|
restarted, you can move forward or back skipping blocks, re-execute the
|
|
last block, etc. See the :mod:`IPython.lib.demo` module and the
|
|
:class:`~IPython.lib.demo.Demo` class for details.
|
|
|
|
Limitations: These demos are limited to
|
|
fairly simple uses. In particular, you cannot break up sections within
|
|
indented code (loops, if statements, function definitions, etc.)
|
|
Supporting something like this would basically require tracking the
|
|
internal execution state of the Python interpreter, so only top-level
|
|
divisions are allowed. If you want to be able to open an IPython
|
|
instance at an arbitrary point in a program, you can use IPython's
|
|
:ref:`embedding facilities <Embedding>`.
|
|
|
|
.. include:: ../links.txt
|